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ABSTRACT
The massive amount of data that is being collected by to-
day’s society has the potential to advance scientific knowl-
edge and boost innovations. However, people often lack suf-
ficient computing resources to analyze their large-scale data
in a cost-effective and timely way. Cloud computing offers
access to vast computing resources on an on-demand and
pay-per-use basis, which is a practical way for people to an-
alyze their huge data sets. However, since their data contain
sensitive information that needs to be kept secret for ethi-
cal, security, or legal reasons, many people are reluctant to
adopt cloud computing. For the first time in the literature,
we propose a secure outsourcing algorithm for large-scale
quadratic programs (QPs), which is one of the most fun-
damental problems in data analysis. Specifically, based on
simple linear algebra operations, we design a low-complexity
QP transformation that protects the private data in a QP.
We show that the transformed QP is computationally in-
distinguishable under a chosen plaintext attack (CPA), i.e.,
CPA-secure. We then develop a parallel algorithm to solve
the transformed QP at the cloud, and efficiently find the
solution to the original QP at the user. We implement the
proposed algorithm on the Amazon Elastic Compute Cloud
(EC2) and a laptop. We find that our proposed algorithm
offers significant time savings for the user and is scalable to
the size of the QP.

CCS Concepts
•Mathematics of computing → Quadratic program-
ming; •Security and privacy → Distributed systems
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1. INTRODUCTION
From universities to multinational companies, modern or-

ganizations collect huge amounts of data that have great po-
tential to advance scientific and engineering knowledge, and
accelerate innovations [6, 11, 23]. For example, biomedicine
researchers can develop novel treatments by finding patterns
in large-scale genomic databases [5]; e-commerce companies
can offer better product recommendations by analyzing bil-
lions of customer transactions [1]; power engineers can per-
form real-time analysis like state estimation and power flow
optimization based on the enormous amount of data col-
lected from the electric grid [13]; and financial firms can
improve their investment strategies by analyzing the daily
deluge of stock market data. Obviously, we have massive
data in all these fields, and such data needs to be stored,
managed, and more importantly, analyzed. However, orga-
nizations face a formidable challenge in trying to analyze
such massive amounts of data in a timely and cost-effective
way.

In particular, it is infeasible for users to analyze large-
scale data sets on traditional computer hardware due to its
limited computing capacity and RAM (random access mem-
ory). To overcome this limitation, many governments have
built supercomputers that can complete very heavy comput-
ing tasks, but have large installation and operating costs (in
the range of tens of millions of dollars or even higher) and
usually have restricted access. Besides, even an in-house
computing cluster can be very expensive and may still lack
enough memory and computing power to analyze large-scale
data sets for big data applications [18,24].

This challenge has attracted significant attention from in-
dustry, academia and governments. Recently, cloud comput-
ing has been proposed as an efficient and economical way for
resource-limited users to analyze massive data sets. In this



computing paradigm, cloud clients outsource their comput-
ing tasks to a cloud server [9, 15, 17, 28, 29], which contains
a large amount of computing resources and offers them on
an on-demand and pay-per-use basis [26]. Therefore, cloud
clients can share the cloud resources with each other, and
avoid purchasing, installing, and maintaining sophisticated
and expensive computing hardware and software.

Although most organizations recognize the advantages of
cloud computing, many of them are reluctant to adopt it due
to privacy concerns [22]. To be more prominent, in many
cases, users’ data are very sensitive and should be kept secret
from the cloud for ethical, security, or legal reasons. For ex-
ample, outsourcing genomic databases to the cloud could re-
veal the owners of the DNA sequences; employing the cloud
to implement recommendation systems for e-commerce can
give unauthorized access to users’ shopping habits; a power
company’s data may disclose the topology of the system,
thus enabling attacks on the electric grid [21]; and solving
portfolio optimization problems at the cloud may compro-
mise financial firms’ private stock allocation strategies. In
fact, users’ private data is vulnerable to malicious cloud ser-
vice providers, who can directly snoop into its users’ data,
and third-party adversaries, who can launch a number of
attacks against the cloud [25], [30]. Therefore, to enable sci-
entists and engineers to revolutionize their fields through the
analysis of large-scale data, we have to design outsourcing
tools that preserve their data privacy. Moreover, the fact
that people usually lack computing and memory storage re-
sources limits the complexity of the operations that they can
perform to hide their data, which makes secure outsourcing
an even more challenging problem.

We observe that many problems that involve sensitive
large-scale data sets employ quadratic programs (QPs), i.e.,
optimization problems with a quadratic objective and affine
constraints, as a fundamental computing block. For ex-
ample, support vector machines, i.e., machine learning al-
gorithms that can be used in genome pattern search, rec-
ommendation systems, etc., can be formulated as QPs [7].
Sequential quadratic programming, which can be used to
solve complex nonlinear optimization problems in science
and engineering, solves a QP at every iteration. Besides,
QPs naturally arise in many practical problems like portfo-
lio optimizations. Therefore, in this work, we concentrate
on securely and efficiently outsourcing QPs, a fundamental
computing task for large-scale data analysis. The problem of
securely outsourcing large-scale computations is particularly
challenging and different from before because the few local
computing and memory resources at users greatly limit the
amount of computations they can perform to protect and
process their data. To the best of our knowledge, we are the
first to investigate the secure outsourcing of QPs.

Some works on secure outsourcing of large-scale computa-
tions to the cloud have proposed traditional cryptographic
techniques, such as homomorphic encryption, to protect the
user’s data and analyze them at the cloud. In particular,
Gennaro et al. [10] propose fully homomorphic encryption
(FHE), which allows secure outsourcing of a function to the
cloud. Wang et al. [32] develop an iterative algorithm where
a user and the cloud collaboratively solve a linear system
of equations. To protect its privacy, the user must first
apply partial homomorphic encryption on its data, which
has a high computational complexity (O(log2 e) flops per
encrypted value, were e is the key size). Similarly, Liu et

al. [20] employ homomorphic encryption to solve gradient
descent problems at the cloud. Although this scheme offers
theoretical privacy guarantee, it requires the user to per-
form computationally expensive operations. Moreover, by
using homomorphic encryption, the user forces the cloud to
carry out operations on ciphertexts, which needs to be han-
dled with specialized linear algebra software, and hence adds
significant overhead to already expensive large-scale compu-
tations at the cloud.

There are a few works which securely outsource a few
problems to the cloud by employing some mapping func-
tions. Wang et al. [31] [33] privately outsource a linear pro-
gramming problem by applying an affine mapping function
to the objective function and constraint matrices. However,
the client needs to perform a matrix-matrix multiplication,
which is prohibitively expensive. In our previous work [27],
we randomize the coefficient matrix of a large-scale linear
systems of equations and outsource the most expensive com-
putations of an iterative solution method to the cloud. Al-
though its computational complexity is low, the user needs
to exchange vectors with the cloud at every iteration, which
may introduce communication delays. Besides, Lei et al. [19]
and Atallah et al. [2] design secure matrix inversion algo-
rithms that use linear algebra operations to offload the in-
version of a matrix to the cloud. However, matrix inversion
is a very computationally expensive task, even for the cloud.
Moreover, when used to solve other problems, matrix inver-
sion is usually an intermediate step (e.g., in the solution of
linear systems of equations, the coefficient matrix needs to
be multiplied by the constant vector after inversion), and
hence it may incur heavy communication cost, and some-
times even infeasible, to communicate the matrix back to
the user before the algorithm can continue. We can see that
such works impose large computational complexity on the
user, and/or need to transmit a large amount of data be-
tween the user and the cloud, which may not be practical
for large-scale data sets.

In this paper, we develop an efficient and practical secure
outsourcing algorithm for solving large-scale QPs. Specifi-
cally, the user protects its QP’s private data by multiplying
the objective and constraint matrices by random sparse ma-
trices. We show that the transformed QP is computation-
ally indistinguishable both in value and in structure under
a chosen plaintext attack (CPA), i.e., CPA-secure. Then,
based on the dual problem theory and the Gauss-Seidel al-
gorithm, the cloud finds the solution to the transformed
QP, and sends the results to the user, who can then effi-
ciently find the solution to its original QP. The algorithm
preserves the user’s privacy by letting the cloud operate
on the transformed QP, rather than on any of the original
problem matrices. Since the user only performs operations
with random sparse matrices, its computational complexity
is O(max{n2,mn}), where n is the optimization variable’s
dimension and m is the number of constraints. Moreover, we
have parallelized the algorithm at the cloud, which speeds
up the overall computing time. The algorithm only employs
traditional linear algebra software, avoiding costly exponen-
tiations required for cyphertext operations as in encryption-
based works. Further, since the user only communicates
with the cloud to find the transformed QP and receive the
results, the proposed algorithm has minimal communication
complexity.

We summarize our main contributions as follows.



• For the first time in the literature, we develop an efficient
and practical algorithm to securely outsource large-scale
QPs to the cloud.

• The proposed algorithm requires the user to perform
computations with onlyO(max{n2,mn}) complexity. To
accelerate the computations, the cloud runs the algo-
rithm in parallel and only employs traditional linear al-
gebra software, which has very low computational bur-
den as well.

• In the proposed algorithm, the user only communicates
with the cloud to transform its QP and to receive the so-
lution, resulting in a constant number of data exchanges
between the user and the cloud.

• We prove that the transformed QP problem can protect
the user’s data privacy. In particular, the transformed
QP has the property of computational indistinguishabil-
ity under a CPA.

• We implement our proposed algorithm on the Amazon
EC2 platform and a laptop. We find that our algorithm
achieves significant time savings for the user compared
to solving the problem by itself, and that its parallel
speedup is scalable.

The rest of the paper is organized as follows. In Section 2,
we introduce the considered system architecture and threat
model. Section 3 describes our privacy-preserving matrix
transformation. Section 4 describes the dual problem and
its Gauss-Seidel solution method. Section 5 presents in de-
tail the proposed algorithm for secure outsourcing of QPs.
We demonstrate our experimental results in Section 7, and
conclude the paper in Section 8.

2. PROBLEM FORMULATION
In this section, we present our system architecture, and

introduce the considered threat model.

2.1 System Architecture
We consider an asymmetric two-party architecture formed

by a resource-constrained user and a resource-abundant cloud.
The user aims to solve a large-scale optimization problem
that has a quadratic objective function and affine constraints,
i.e., a quadratic programming problem of the form [3]

min
x

ϕ(x) =
1

2
x⊤Qx− b⊤x (1a)

subject to Ax ≤ c (1b)

where x ∈ Rn×1 is the optimization variable, and Q ∈ Rn×n

and b ∈ Rn×1 are the quadratic and linear coefficients, re-
spectively. Matrix A ∈ Rm×n and vector c ∈ Rm×1 define
the set of affine constraints. The user aims to find the opti-
mal solution x∗ such that the objective in (1a) is minimized
and the inequalities in (1b) are satisfied. We assume that
the coefficient matrix Q is positive definite, and hence, the
QP in (1) has a unique solution. We also assume that A is
full-rank.

Due to the large size of the QP, the user is unable to solve
it by itself in a feasible amount of time. Thus, to find the
optimal solution, the user outsources the most computation-
ally expensive tasks to the cloud. We show this architecture
in Fig. 1.

Figure 1: An Architecture for Securely Outsourcing
QPs.

Besides, we denote the set of index pairs that point to
non-zero elements in a matrix K ∈ Rm×n as follows

SK = {(i, j)|ki,j ̸= 0 ∀i ∈ [1,m],∀j ∈ [1, n]} (2)

where i and j denote the ith and jth column of K, respec-
tively.

2.2 Threat Model
We assume a malicious threat model for the cloud. In par-

ticular, the cloud attempts to learn the user’s private data
from the user’s outsourced data and the results of its own
computations. Additionally, the cloud may deviate from the
proposed protocols or return erroneous results.

Therefore, to securely outsource the computation of the
QP problem, we adopt the concept of computational indis-
tinguishability under a CPA [16]. In a matrix, we notice
that the non-zero elements’ values and positions both carry
private information. In the following, we formally define
computational indistinguishability under a CPA, i.e., CPA
security, for these two types of private information, respec-
tively.

We first introduce the definition of a pseudorandom func-
tion as follows, which will be utilized to construct matrix
transformations with CPA security.

Definition 1. Let F be a function and f a truly random
function. We say F is a pseudorandom function if for all
probabilistic polynomial-time distinguishers D, there exists a
negligible function µ such that

|Pr[DF (1n) = 1]− Pr[Df (1n) = 1]| ≤ µ (3)

Distinguishers DF and Df have oracle access to functions
F and f , respectively.

Definition 2. Computational Indistinguishability in Value:
We say that a matrix transformation scheme has indistin-
guishable transformations in value under a chosen-plaintext



attack (or is CPA-secure in value) if for all probabilistic
polynomial-time adversaries A there exists a negligible func-
tion µ, such that the probability of distinguishing two matrix
transformations in value in a CPA indistinguishability ex-
periment is less than 1/2 + µ.

Definition 2 establishes the inability of an attacker to tell
apart the non-zero values in a matrix K from those in an-
other matrix. Moreover, the positions of the non-zero ele-
ments in K (i.e., K’s structure), contain private information
that should also be hidden from the cloud.

To protect a matrix’s structure, we propose to permute its
rows and columns in such a way that the non-zero elements
occupy positions that are indistinguishable from those of the
non-zero elements in another matrix. We give the definition
of secure permutation below.

Definition 3. Computational Indistinguishability in Struc-
ture: We say that a permutation scheme has indistinguish-
able permutations under a chosen-plaintext attack (or is CPA-
secure in structure) if for all probabilistic polynomial-time
adversaries A there exists a negligible function µ, such that
the probability of distinguishing two permutations in a CPA
indistinguishability experiment is less than 1/2 + µ.

3. A PRIVACY-PRESERVING MATRIX
TRANSFORMATION

To securely upload a QP problem to the cloud, the user
must first conceal its private data by performing certain
computations. In this section, we describe a privacy-preserving
transformation that conceals a matrix’s non-zero elements
and structure and can be used to conceal matrices A, and
Q. Note that we assume Q is positive definite, and A is
full-rank.

3.1 Privacy-preserving Matrix Multiplications
We propose that the user efficiently conceals the non-zero

values of a private matrix by employing sparse random ma-
trix multiplications. In particular, the user can hide the
non-zero values of a private matrix H ∈ Rm×n by perform-
ing the following operations:

H̃ = (I+ FD)H, (4)

where I ∈ Rm×m is the identity matrix. We assume that
matrix H’s non-zero elements hi,j ← {0, 1}k represent real
numbers within the range [−G,G] for (i, j) ∈ SH, where
G = 2s (s > 0), and SH is the structure of H as defined in
(2).

In (4), matrix F ∈ Rm×m is a diagonal matrix, i.e.,

fi,j =

{
ti i = j

0 otherwise
, (5)

for i, j ∈ [1,m], where ti is the ith element of vector t ∈
Rm×1 and determined by using a function Fc : {0, 1}w ×
{0, 1}w → {0, 1}w, i.e.,

ti = Fc(ri, g) ∀i ∈ [1,m] (6)

where ri is a random bit string and g is a constant one. The
elements of t are mapped to real numbers within the range
(0, 1].

Matrix D ∈ Rm×m is a sparse matrix with zeros in its di-
agonal, and non-zeros in some of its off-diagonal positions.

Off-diagonal elements di,j ← {0, 1}k (for i ̸= j) are arbi-
trary constants that represent real numbers whose absolute
values are within the range [2w, 2w+z] (w > s, z > 0), and
their positions are chosen in such a way that the following
constraint is satisfied:∑

(k,j)∈S′
H

di,khk,j ̸= 0 (7)

for any (i, j) ∈ SH, where S ′
H ⊆ SH1. Besides, we set the

maximum number of elements in S ′
H to a small constant α,

i.e., |S ′
H| ≤ α << n. Thus, the complexity of computing H̃

as in (4) is limited by O(α|SH|).
Subsequently, the non-zero elements of H̃ in (4) are given

by

h̃i,j = hi,j + ti
∑

(k,j)∈S′
H

di,khk,j (8)

for i ∈ [1,m] and j ∈ [1, n]. Note that h̃i,j is within the
range [−G− L,G+ L], where L = α2w+zG
We denote these computations as

MaskFc(ri, hi,j) = h̃i,j . (9)

We can now arrive at a theorem about the CPA-security
in value of the matrix multiplication in (4).

Theorem 1. If Fc(·, ·) is a pseudorandom function, the
matrix multiplication in (4) is computationally indistinguish-
able in value under a CPA.

Proof. According to Definition 2, we need to show that
given two arbitrary matrices H0 and H1 with the same
structure as H, i.e., SH0 = SH1 = SH, 1) H̃0 and H̃0 have

the same structure; and 2) that h̃0
i,j and h̃1

i,j (∀(i, j) ∈ SH̃)
are indistinguishable under a CPA.

To prove 1), we show that both H̃0 and H̃1 have the same
structure. Let D̄ = I + FD. Then, since SD̄0 = SD̄1 and
SH0 = SH1 , we can see from (4) that SH̃0 = SH̃1 , i.e., both

H̃0 and H̃1 have the same structure.
To prove 2), we need to show that a probabilistic poly-

nomial time (PPT) distinguisher D cannot distinguish h̃0
i,j

from h̃1
i,j for any (i, j) ∈ SH̃c (c ∈ {0, 1}) with a probability

significantly higher than 1/2 in a CPA experiment.
Specifically, suppose a PPT adversaryA carries out a CPA

indistinguishability experiment AFc as shown in Algorithm
1. In particular, an adversary A outputs two arbitrary num-
bers, h0

i,j , h
1
i,j ← {0, 1}k. A bit b← {0, 1} is randomly cho-

sen, and MaskFc(r′i, h
b
i,j) = h̃b

i,j is computed and given to
A, where r′i is a random number. A has oracle access to
MaskFc and eventually outputs b′. If b′ = b, we say that A
succeeds and set AFc = 1. Note that the random number r′i
is shared with the adversary.

Now consider an experiment Afc that is exactly the same
as AFc except that a truly random function fc : {0, 1}w →
{0, 1}w is used in place of Fc. A’s probability of success, i.e.,
Afc = 1, depends on two cases:

1. The oracle chooses the same random number r′i used
to compute h̃b

i,j to answer at least one of A’s queries.
In this case, A can easily tell which of its values was
masked and hence correctly get b′ = b, i.e., Afc = 1.
We denote this case as C0.

1We assume that there is at least one non-zero off-diagonal
element in every column of H, which is practical for most
positive-definite or full-rank matrices.



Algorithm 1 A CPA Indistinguishability Experiment: AFc

1: An adversary A outputs two arbitrary numbers
h0
i,j , h

1
i,j ← {0, 1}s.

2: A random bit b ← {0, 1} is chosen. MaskFc(r′i, h
b
i,j) =

h̃b
i,j is computed and given to A, where r′i is randomly

chosen.
3: A continues to have oracle access to MaskFc and out-

puts a bit b′.
Output: 1 if b′ = b and 0 otherwise.

2. The oracle never chooses the same random number r′i
used to compute h̃b

i,j to answer A’ queries. In this case,
the adversary A succeeds with a certain probability.
We denote this case as C1.

In particular, recall that h̃b
i,j is within the range [−G−

L,G+L]. Hence, the best strategy for an adversary A
is to set h0

i,j = 0 and h1
i,j ≥ 0, and return b ← {0, 1}

with equal probability if −L ≤ h̃b
i,j ≤ L, and 1 if

h̃b
i,j < −L or h̃b

i,j > L. Consequently, we have that
the success probability of A is given by

Pr[Afc = 1|C1]

=
1

2
Pr[−L ≤ h̃b

i,j ≤ L]

+ Pr[h̃b
i,j < −L] + Pr[h̃b

i,j > L]

=
1

2

(
1− Pr[h̃b

i,j < −L]− Pr[hb
i,j > L]

)
+ Pr[h̃b

i,j < −L] + Pr[h̃b
i,j > L]

where

Pr[h̃b
i,j > L] = Pr[hb

i,j + ti
∑

(k,j)∈S′
H

vi,khk,j > L]

= Pr[ti >
L− hb

i,j∑
(k,j)∈S′

H
vi,khk,j

]

≤ Pr[ti >
L−G

L
]

=
G

L

Similarly, we find that Pr[h̃b
i,j < −L] ≤ G

L
. Therefore,

the probability of success for adversary A in the case
C1 is bounded as follows:

0 < Pr[Afc = 1|C1] ≤
1

2
+

G

L
.

Note that G = 2s and L = α2w+zG. Thus, we have

ν(w) =
G

L
=

1

α2w+z
,

which is a negligible function when w is large.

Therefore, the probability of Afc = 1, i.e., A succeeding,
can be calculated as:

Pr[Afc = 1] = Pr[Afc = 1|C0]Pr[C0] (10)

+ Pr[Afc = 1|C1]Pr[C1] (11)

≤ Pr[C0] + Pr[Afc = 1|C1] (12)

Since A is a polynomial time adversary, it can at most make
α(w) queries to the oracle, where α(·) is a polynomial func-
tion. Hence, in Afc , A can query the oracle at most α(w)
times. Considering that the values returned by the oracle
to A are truly random numbers, the probability that A suc-
ceeds, i.e., Afc = 1, is

Pr[Afc = 1] ≤ α(w)

2w
+ ν(w) +

1

2
(13)

Next, we define the function µ as follows:

µ(w) = Pr[AFc = 1]− 1

2
,

and hence we have

Pr[AFc = 1] =
1

2
+ µ(w). (14)

Intuitively, if µ(w) is not negligible, then the difference
between (13) and (14) is also not negligible. Thus, an adver-
sary A would be able to distinguish a truly random function
and a pseudorandom function.

To formally prove this, we use A to construct a distin-
guisher D. To this end, D emulates the CPA indistinguisha-
bility experiment for A as described in Algorithm 2 and ob-
serves whether A succeeds or not. If A succeeds, D guesses
that its input is a pseudorandom function, while if A fails,
D guesses that this oracle is a truly random function.

Algorithm 2 Distinguisher D

1: D is given access to an oracle O.
2: When A queries with two arbitrary numbers h0

i,j , h
1
i,j ,

choose a random bit b← {0, 1}, compute h̃b
i,j = vitjh

b
i,j

where vi is the output of the oracle O and tj is as defined
before, and return it to A.

3: Continue answering any oracle queries of A. Eventually,
A outputs b′.

Output: 1 if b′ = b and 0 otherwise.

We observe that ifD’s oracle uses a truly random function,
the view of A when called by D as a sub-routine is identical
to its view when called by Afc . Therefore, we have that

Pr[Dfc = 1] = Pr[Afc = 1]. (15)

On the other hand, if D’s oracle is a pseudorandom func-
tion, then the view of A when called by D is identically
distributed to its view when called by AFc . Thus, we get

Pr[DFc = 1] = Pr[AFc = 1]. (16)

Taking the difference of equations (16) and (15), we get

Pr[DFc = 1]− Pr[Dfc = 1] ≥ µ(w)− ν(w)− α(w)

2w

Since we have assumed that Fc is a pseudorandom function,

the term µ(w)−ν(w)− α(w)
2w

must be negligible by Definition
2. Moreover, since we have shown that ν(w) is negligible,
and α(w) is polynomial, this implies that µ(w) must also be
negligible, making our value masking transformation secure
under CPA.

By union bound, this concludes the proof.2

2Note that when we have hi,j = hk,j for any i ̸= k,
(i, j) ∈ SH, (k, j) ∈ SH, an attacker may be able to dis-

tinguish h̃0
i,j and h̃1

i,j , i.e., the jth columns in H̃0 and H̃1.



3.2 Privacy-preserving Matrix Permutations
Although the matrix transformation in equation (4) hides

the values of the non-zero elements inH, it reveals their orig-
inal positions, i.e., H’s structure, which is also private. Next,
we design secure permutations that can hide H’s structure
by randomly reordering the rows and columns of H̃.

To randomly permute H̃’s row index vector e ∈ Rm×1,
the user computes the following

e′ =M(e), ê′ = F (r, e′), ê =M−1(ê′) (17)

whereM : Rm → {0, 1}k (k = ⌈log2 m!⌉) is a function that
maps index vectors to bit strings; F : {0, 1}k → {0, 1}k is
a pseudorandom permutation; r ∈ {0, 1}k is a random bit
string; and M−1 : {0, 1}k → Rm is the inverse of M. We
denote these computations as

PermF (r, e) = ê (18)

Similarly, we can denote by PermF (r′,u) the random per-

mutation of column index vector u ∈ Rn, where r′ ∈ {0, 1}k
′

(k′ = ⌈log2 n!⌉) is a random bit string.
The user applies the random permutations Perm(r, e)

and Perm(r′,u) to H̃ through the following multiplications

Ĥ = EH̃U (19)

where E ∈ Rm×m and U ∈ Rn×n are random permutation
matrices, and their elements are defined by

ei,j = δπ(i),j ∀i ∈ [1,m], j ∈ [1,m]

ui,j = δπ(i),j ∀i ∈ [1, n], j ∈ [1, n]

where i and j are the row and column indexes, respectively,
and the function π(·) maps an original index i to its per-
muted index, i.e., π(i) = êi (for i ∈ [1,m]) and π(i) = ûi

(for i ∈ [1, n]). Besides, the Kronecker delta function is
given by

δi,j =

{
1, i = j
0, i ̸= j

.

The CC is able to recover the original matrix by applying
the inverse permutations, i.e.,

H̃ = E⊤ĤU⊤ (20)

where ⊤ denotes the matrix transpose operation. To reach
this result, we have used the orthogonal property of permu-
tation matrices, i.e, E⊤E = I and UU⊤ = I, where I is the
identity matrix.

We now state a theorem about the CPA-security in struc-
ture of the above matrix permutations in (19).

Theorem 2. If F (·, ·) is a pseudorandom function, then
the row and column permutations described in (19) are com-
putationally indistinguishable in structure under a CPA.

Proof. The proof follows a similar approach to that for
Theorem 1 and hence is omitted here due to space limit.

In this case, the above multiplication alone cannot be CPA-
secure. However, since this matrix is either positive-definite
or full-rank, it can only happen for one column. The pro-
posed whole matrix transformation scheme, i.e., matrix mul-
tiplications along with matrix permutations that will be in-
troduced later, is still CPA- secure.

4. THE LAGRANGE DUAL PROBLEM
Since directly solving the original QP in (1) needs com-

putationally expensive methods, such as the active-set or
interior point method, in this section, we first find an equiva-
lent optimization problem that only has non-negativity con-
straints, called the Lagrange dual problem.

We first form the Lagrangian L : Rn×1 × Rm×1 → R as
follows [3]:

L(x,λ) = ϕ(x) + λ⊤(Ax− c) (21)

where λ ∈ Rm×1 is the vector of dual variables, and A and
c are defined in (1).

We define the Lagrange dual function g : Rm×1 → R as
the minimum value of the Lagrangian over x (for λ ∈ Rm×1),
i.e.,

g(λ) = inf
x
L(x,λ). (22)

To solve the Lagrange dual function, we take the deriva-
tive of equation (21) with respect to x and set it to zero as
follows:

x⊤Q− b⊤ + λ⊤A = 0 (23)

where we have used the definition of ϕ(·) in (1a). Taking
the transpose in (23) and solving for x, we get

x = Q−1(b−A⊤λ). (24)

Then, by plugging (24) into (21) and considering that Q
is symmetric, we can rewrite the Lagrange dual function as

g(λ) = −1

2
λ⊤AQ−1A⊤λ− λ⊤(c−AQ−1b)− 1

2
b⊤Q−1b.

(25)

By using equation (25) as the objective function and re-
quiring λ to be non-negative, we arrive at the dual problem
of the QP in (1), i.e.,

min
λ

g(λ) =
1

2
λ⊤Pλ+ λ⊤r (26a)

subject to λ ≥ 0 (26b)

where P = AQ−1A⊤ and it is positive definite and sym-
metric, and r = c−AQ−1b. We denote the solution to (26)
as λ∗.

Since the problem (1) is convex and the affine constraints
are feasible, then the strong duality holds [3] and we have
that

x∗ = Q−1(b−A⊤λ∗). (27)

That is, we can use the result of the dual problem in (26) to
solve the QP in (1)

5. SECURE OUTSOURCING OF LARGE-
SCALE QPS

In this section, we design a secure and efficient outsourcing
algorithm for large-scale QP problems based on the dual
problem found in Section 4.

5.1 An Iterative Solution to QPs
Before we delve into details about our secure outsourc-

ing algorithm, we first present the Gauss-Seidel algorithm
(GSA), an iterative solution method for optimization prob-
lems that we employ to solve the dual problem in (26).



The main idea of the GSA is to iteratively update an ele-
ment of the solution vector λ in such a way that it minimizes
the objective function when all the other elements are kept
constant. In particular, the GSA can solve (26) as follows:

λj(t+ 1) = arg min
λj≥0

g(λ1(t+ 1), . . . , λj−1(t+ 1),

λj , λj+1(t), . . . , λm(t)) (28)

where j ∈ [1,m]. Intuitively, the algorithm updates λj (for
all j ∈ [1,m]) one at a time, and uses the most recent up-
dates as they become available.

Let (λ1(t + 1), . . . , λj−1(t + 1), λj , λj+1(t), . . . , λm(t)) be
denoted as λj(t). We can solve equation (28) analytically
by taking the partial derivative of g(λj(t)) in (26a) with
respect to λj and setting it to zero:

∂g(λj(t))

∂λj
= rj + pjλj(t) = 0

where rj is the jth element of r, and pj is the jth row of P.
Then, the unconstrained minimum of g(·) along the jth

coordinate starting from λj(t) is attained at

λ′
j(t+ 1) = λj(t)−

1

pj,j
(rj + pjλj(t)) ∀j ∈ [1,m]

where t is the iteration index.
Thus, taking into account the non-negativity constraint

and holding all the other variables constant, we get that the
Gauss-Seidel iteration, when λj is updated, is

λj(t+ 1) = max{0, λ′
j(t+ 1)}

= max{0, λj(t)−
1

pj,j
(rj + pjλj(t))}, (29)

λi(t+ 1) = λi(t) ∀i ̸= j. (30)

After all the λi(t+1)’s (1 ≤ i ≤ m) are updated, the GSA
iteration proceeds to the next.

5.2 A Parallel Solution to QPs
We exploit the structure of matrix P to derive a parallel

version of the above GSA algorithm, which we call PGSA.
Specifically, since P is a symmetric matrix, according to
(29), if the kth element of pj is equal to zero, i.e., pj,k = 0
and hence pk,j = 0, then we can update λj independently of
λk.

To find the groups of λj ’s that can be updated in parallel,
we first model the relationships between them as an undi-
rected graph G = {V, E}, were V is a set of vertexes and E
is the set of edges. We build the graph G by placing an edge
between two variables whose updates depend on each other.
Thus, the vertex and edge sets are defined as

V = {λ1, . . . , λm}, E = {(λi, λj)|pi,j ̸= 0}

where the notation (λi, λj) indicates there is an edge be-
tween λi and λj .

Thus, in the graph G, a group of variables that are all con-
nected need to be updated sequentially, and different groups
can be updated in parallel. Specifically, we group variables
that belong to the same connected component of G into a
set Cl (l ∈ [1, L]), where L is the total number of connected
components. We denote the vector of variables in the set Cl
as

λl = (λl
1, . . . , λ

l
pl)

where pl = |Cl|, and the vector containing all variables as

λ = (λ1, . . . ,λL).

Note that the user can efficiently find the connected com-
ponents of G by using the depth-first algorithm [4]. Then,
the GSA sequentially updates each vector λl’s variables as
described in Section 5.1 and updates different vectors λl for
all l ∈ [1, L] in parallel.

In particular, we rewrite equation (28) regarding λl’s vari-
ables as follows:

λl
k(t+ 1) = arg min

λl
k
≥0

g(λ1, . . . , λl
1(t+ 1), . . . ,

λl
k−1(t+ 1), λl

k, λ
l
k+1(t), . . . ,

λl
pl(t), . . . ,λ

L) (31)

for any k ∈ [1, pl], where vectors λq for all q ̸= l are assumed
to be constants. Denote the above variables in g(·) by λl

k(t).
The solution to (31) for the kth variables in λl is thus given
by

λl
k(t+ 1) = max{0, λ′l

k(t+ 1)}

= max{0, λl
k(t)−

1

pk,k
(rk + pkλ

l
k(t))} (32a)

λl
q(t+ 1) = λl

q(t) ∀q ̸= k. (32b)

Note that in (32a) the terms pk,qλ
m
q = 0 for all m ̸= l, and

thus variables in λl can be updated without knowledge of
the variables in other vectors.

The iteration is carried out until the sequence {λ(t)} con-
verges, i.e., until ||λ(t)−λ(t+ 1)||2 ≤ ν, where ν > 0 is the
stopping parameter.

Algorithm 3 The Parallel Gauss-Seidel Algorithm

Input: P, r
1: Build G
2: Form the sets Cl ∀l ∈ [1, L] by finding the connected

components in G
3: λ(0)← λ0

4: t←= 1, ν(1)← ν0
5: while ν(t) > ν do
6: for l = 1 to L do
7: Compute λj(t+1) ∀j ∈ Cl in parallel using equation

(32)
8: end for
9: ν(t+ 1) = ||λ(t)− λ(t+ 1)||2
10: t = t+ 1
11: end while
Output: λ(t)

Next, we state a theorem about the convergence and cor-
rectness of the PGSA algorithm.

Theorem 3. Let g(·) be a convex and continuous func-
tion as defined in (26). Let {λl(t)} be the sequence generated
by the PGSA algorithm when updating λ. Then every limit
point of {λ(t)} minimizes g(·) over all λj ∈ Cl.

Proof. We first show that the sequence {λ(t)} converges.
Suppose that there is only one group of connected compo-
nents C1, i.e.,

C1 = {λj |j ∈ [1,m]},



and thus λ = λ1. Let

zj(t) = (λ1(t+ 1), . . . , λj(t+ 1), λj+1(t), . . . , λm(t))

Since by definition λj(t + 1) is a solution to equation (28),
we have

g(λ(t)) ≥ g(z1(t)) ≥ g(z2(t)) ≥ · · · ≥ g(λ(t+ 1)). (33)

Notice that the GSA update reduces the value of the objec-
tive function g(·) after each iteration.

Suppose that λ∗ = (λ∗
1, . . . , λ

∗
m) is a limit point of the

sequence {λ(t)}. Then, we get λ∗ ≥ 0. Let {λ(tk)} be
a subsequence of {λ(t)} that converges to λ∗. From (33),
we know that the sequence {g(λ(tk))} converges to either a
finite number or −∞. Using the convergence of λ(tk) to λ∗

and the continuity of g(·), we see that {g(λ(tk))} converges
to g(λ∗), which implies that the entire sequence {g(λ(t))}
converges to g(λ∗). To show that {g(λ(t)} converges when
L > 1, we can follow a similar procedure for λl (for all l ∈
[1, L]) assuming vectors λq (for all q ̸= l) are kept constant.

Next, we show that every limit point λ∗ in fact mini-
mizes g(·). Particularly, we first consider the case when
L = 1 and show that λ1(tk + 1)− λ1(tk) converges to zero.
Assume the contrary, or equivalently, that z1(tk) − λ(tk)
does not converge to zero. Let γ(tk) = ||z1(tk) − λ(tk)||2.
By possibly restricting to a subsequence of tk, we may as-
sume that there exists a γ0 > 0 such that γ(tk) > γ0 for
all k. Let s1(tk) = (z1(tk) − λ(tk))/γ(tk). Hence, we have
z1(tk) = λ(tk) + γ(tk)s1(tk) and ||s1(tk)||2 = 1. Note that
s1(tk) belongs to a compact set and hence has a limit point
s∗1. By restricting to a further subsequence of {tk}, we as-
sume that s1(tk) converges to s∗1.

Fixing an ϵ ∈ [0, 1], we see that 0 ≤ ϵγ0 ≤ γ(tk), and
that λ(tk) + ϵγ0s1(tk) is on the segment joining λ(tk) and
z1(tk) = λ(tk) + γ(tk)s1(tk). Due to the convexity of g(·),
and the fact that z1(tk) minimizes g(·) over all λ that differ
from λ(tk) along the first component, we get

g(z1(tk)) = g(λ(tk) + γ(tk)s1(tk))

≤ g(λ(tk) + ϵγ0s1(tk))

≤ g(λ(tk)).

Taking the limit as k →∞, we obtain

g(λ∗) ≤ g(λ∗ + ϵγ0s
∗
1) ≤ g(λ∗)

where we have used the fact that g(z1(tk)) converges to
g(λ∗) due to equation (33). Thus, we have that

g(λ∗ + ϵγ0s
∗
1) = g(λ∗)

for every ϵ ∈ [0, 1]. Therefore, this contradicts the convexity
of g(·) because we have that γ0s

∗
1 ̸= 0. This contradiction

establishes that z1(tk)−λ(tk) converges to zero, and specif-
ically, that z1(tk) converges to λ∗.

Besides, according to equation (33), we get that

g(z1(tk)) ≤ g(λ1, λ2(tk), . . . , λm(tk)) ∀λ1 ≥ 0.

Taking the limit as k → ∞ and using the fact that z1(tk)
converges to λ∗, we obtain

g(λ∗) ≤ (g(λ1, λ
∗
2, . . . , λ

∗
m)) ∀λ1 ≥ 0.

Therefore, taking into account that g(·) is convex, we con-
clude that λ∗

1 is the minimizer along the first variable, i.e.,

∇1g(λ
∗)⊤(λ1 − λ∗

1) ≥ 0, ∀λ1 ≥ 0.

By following a similar argument to the above for j > 1 and
putting the inequalities together, we get

∇g(λ∗)⊤(λ− λ∗) ≥ 0, ∀λj ≥ 0. (34)

Since g(·) is convex, (34) is a necessary and sufficient condi-
tion for λ∗ to be the global minimizer.
In the case of L > 1, we can follow a similar process for

λl for all l ∈ [1, L] when λp (for all p ̸= l) is kept constant.
This concludes the proof.

5.3 A Secure Outsourcing Method for QPs
In what follows, we describe our secure QP solver (SQPS),

which solves the QP in Section 2. Specifically, in the SQPS,
the user and the cloud collaboratively find a secure version of
the dual problem, which is then solved by the cloud. Based
on the solution to the secure dual problem, the user finds
the solution to the original QP.

5.3.1 Secure Formulation of the Dual Problem
As shown in Section 4, the user can find the dual problem

by solving for P and r in (26). However, due to their massive
size, the user is unable to compute these matrices on its
own. Besides, to solve the dual problem, the user needs
to securely outsource it to the cloud. In the following, we
develop a scheme that allows the user to securely find and
outsource the dual problem of a QP by employing the matrix
transformation proposed in Section 3.

In particular, to securely find the dual problem’s coeffi-
cient matrix P in the objective function, the user and the
cloud collaborate to compute two matrix multiplications,
i.e., W = AQ−1 and P = WA⊤. To this end, the user
first applies the matrix transformations (4) and (19) to Q
and A in (1) as follows:

Q̄ = VQQTQ,

where VQ is formed by a random permutation matrix and
a random sparse matrix, i.e., VQ = EQ(I + FQDQ), and
TQ by a random permutation matrix. Similarly, the user
conceals A as follows:

Ā = VAATQ

where VA = EA(I+ FADA).
After receiving Q̄ and Ā, the cloud inverts Q̄, i.e.,

Q̄−1 = T−1
Q Q−1V−1

Q ,

computes the matrix multiplication

W̄ = ĀQ̄−1 = VAWV−1
Q ,

where W = AQ−1, and sends Q̄−1 and W̄ to the user.
To compute P = WA⊤, the user finds and conceals W,

i.e.,

W̄′ = VW(V−1
A W̄VQ)TW = VWWTW

where VW = EWDW and TW = FWUW, conceals A⊤,
i.e.,

Ā′ = T−1
WA⊤VA⊤

where VA⊤ = EA⊤(I+FA⊤DA⊤), and uploads W̄′ and Ā′

to the cloud. Note that T−1
W can be easily computed by the

user since it is an orthogonal permutation matrix.
Then, the cloud computes P̄ = W̄′Ā′ = VWPVA⊤ and

transmits it to the user.



In the last step, the user finds P as follows:

P = V−1
W P̄V−1

A⊤ .

Based on the cloud results, the user can also compute the
linear objective coefficient vector r:

r = c−Wb. (35)

5.3.2 Initialization
To securely carry out the main iteration of the PGSA at

the cloud, the user conceals and uploads the dual problem’s
coefficient matrix P, the linear coefficient vector r, and the
initial solution vector λ0. Specifically, the user computes

P̂ = VPRPPV−1
P , (36)

where RP > 0 is a diagonal matrix, whose elements are gen-
erated by a pseudorandom function like in (6), aiming to pro-
tect values of the diagonal elements in P, and VP = EPFP

is formed by the random permutation and diagonal matri-
ces as described in Section 3. Besides, the user calculates
r̂ = VPRPr, and

λ̂0 = VPλ0 (37)

where the elements of both λ0 ∈ Rm×1 are positive and
uniformly chosen at random. After receiving the above vari-

ables, to form the vectors λ̂
l
(l ∈ [1, L]) that can be updated

in parallel, the cloud finds the connected components of the
matrix P̂ as described in Section 5.2, and update them based
on equation (32).

Note that in the original dual problem (26), we have the
constraint λ ≥ 0. To enable the cloud to accurately deter-

mine the sign of λ′l
k(t + 1) (for all k ∈ [1, pl], l ∈ [1, L]) in

equation (32), the user shares with the cloud the signs of the
non-zero elements in VP by uploading the following vector

sVP = vP ⊘ |vP|.

Here, since VP is an n× n matrix where in each row there
is only one non-zero element, we denote by vP the vector
of the n non-zero elements in VP. Moreover, ⊘ and | · | de-
note element-wise division and element-wise absolute value,
respectively.

5.3.3 Main Iteration
The cloud carries out the PGSA update in (32) as follows:

λ̂′l
k(t+ 1) = λ̂l

k(t)−
1

p̂k,k
(r̂k+p̂kλ̂

l

k(t))

for all k ∈ [1, pl], l ∈ [1, L], where p̂k is the kth row of P̂.

Furthermore, suppose that λ̂′l
k is the jth element in the

vector λ̂. To check the sign of the corresponding λ̂l
k(t+ 1),

the cloud employs vector sVP as follows:

λ̂l
k(t+ 1) =


λ̂′l

k(t+ 1), if λ̂′l
k(t+ 1) ≥ 0 ∧ sj > 0

λ̂′l
k(t+ 1), if λ̂′l

k(t+ 1) ≤ 0 ∧ sj < 0

0, if λ̂′l
k(t+ 1) < 0 ∧ sj > 0

0, if λ̂′l
k(t+ 1) > 0 ∧ sj < 0

where sj is the jth element of sVP .
The cloud continues the iteration until the vector of up-

dates converges, that is, until ||λ̂
l
(t)− λ̂

l
(t+1)||2 ≤ ν for all

l ∈ [1, L], where 0 < ν < 1 is the stopping parameter. Once
the cloud determines that the algorithm has converged, it

transmits λ∗ and Q̂⊤ to the user, who computes the solu-
tion to the dual problem as follows:

λ∗ = V−1
P λ̂

∗
,

and the solution to the original QP problem by

x∗ = TQQ̄−1VQ(b−A⊤λ∗).

Since the user only performs computations with transfor-
mation matrices and vectors, its computational complexity
is quadratic regarding the QP’s dimension. Specifically, to
hide its private matrices in Section 5.3.1, the user trans-
forms matrices Q, A, W, A⊤ and finds matrix P, which
take O(max{n2,mn}) complexity. In Section 5.3.2, simi-
larly, the user performs matrix transformations with O(n2)
complexity. In Section 5.3.3, to recover the solution to the
original problem, the user performs matrix-vector operations
and matrix transformations, which have O(max{n2,mn})
complexity. Therefore, the overall computational complex-
ity of the user in the algorithm is O(max{n2,mn}), which
is practical.

5.4 Result Verification
Since the cloud may return erroneous results, we pro-

pose a result verification procedure for the user based on
the Karush-Kuhn-Tucker (KKT) conditions. In particular,
based on the KKT conditions, the user verifies that the solu-
tion x∗ it computed minimizes the QP’s objective function
ϕ(·) and satisfies the constraints of the QP problem in (1)
by evaluating the following

Ax∗ − c ≤ 0, (38)

λ∗ ≥ 0, (39)

λ∗⊤(Ax∗ − c) = 0, (40)

(Qx∗ − b) +Aλ∗ = 0. (41)

Equations (38) and (39) verify the feasibility of x∗ and λ∗,
respectively. The complimentary slackness in equation (40)
validates the equality of the dual and primal solutions. The
fourth KKT condition in (41) shows that the solution x∗

minimizes ϕ(·). If the KKT conditions hold, the user de-
termines that the solution x∗ that it computed based on
the cloud results is correct. Otherwise it determines that
the cloud is acting unfaithfully. Since the evaluation of the
KKT conditions only requires matrix-vector multiplications,
the client is able to efficiently evaluate them.

6. PRIVACY ANALYSIS
Inspecting the proposed secure outsourcing algorithms, we

observe that the cloud only has access to the securely trans-
formed QP, and hence it is unable to learn private informa-
tion from the user.

Specifically, in the process of secure formulation of the
dual problem as in Section 5.3.1, the user shares with the
cloud the transformed matrices Q̂, Ā, Ā′, and W̄′. Accord-
ing to Theorem 1, and Theorem 2, the transformed matrices
are computationally indistinguishable both in value and in
structure under a CPA. Thus, the cloud cannot derive any
information about the elements of the original QP’s matri-
ces Q, A, b, or c from the transformed matrices that the
user uploads.

In the process of solving the dual problem as in Section
5.3.2, the user uploads P̂, and r̂ to the cloud. By inspecting



our algorithm, we see that the cloud needs access to VP

to find P and r. However, since the user keeps VP secret,
the cloud is unable to learn anything about the dual problem
based on P̂ and r̂. Also, since the search space for the private
matrices Q,A, and b is exponential (i.e., their values are
rational numbers), it remains infeasible for the adversary
to learn private information from the user based on P and
r. Therefore, we can relax the CPA security assumption
for P and r, and consider a cipher-text only threat model,
which allows us to conceal P and r with a multiplication
rather than an addition, and have a more efficient algorithm
design.

Furthermore, the cloud is unable to learn anything about
the dual solution vector λ∗ or the solution vector x∗. In
particular, for the cloud to calculate λ∗ from λ̂

∗
, it needs

knowledge about the elements in matrix VP, which the user
keeps secret. We also observe that x∗ remains unknown to
the cloud because the cloud would need access to TQ, VQ,
b, and A, but the user never uploads them.

7. EXPERIMENT RESULTS
In this section, we describe the implementation of our pro-

posed algorithm and throughly analyze its performance.

7.1 Experiment Setup
To closely replicate a real-world scenario, we run the user

part of the algorithm on a laptop with a dual-core 2.4GHz
CPU, 8GB RAM memory, and a 150GB solid state drive,
and the cloud part on an Amazon Elastic Compute Cloud
(EC2) cluster with 4 computing nodes. We implement the
user and cloud parts of the algorithm on Matlab 2014b and
Python’s linear algebra software SciPy [14], respectively.
Moreover, we employ Apache Spark [35] to manage the stor-
age and computations at the EC2 computing cluster.

We test the performance of our algorithm with both ran-
dom and real-world QPs in diverse fields, e.g., aerospace
engineering, circuit design, power system analysis, and op-
erations research, taken from well known repositories [8,12].
In addition, since efficient matrix computations at the cloud
have been studied before [34], we disregard the cloud’s time
to perform matrix multiplication and inversion (i.e., Q̄−1,
W̄ and P̄). We instead focus on the time complexity of
computing the PGSA algorithm and finding the connected
components in P̂ at the cloud, and the time complexity of
performing the QP transformation and solution computa-
tion at the user.

7.2 Computing Time
We first analyze the computing time of our secure out-

sourcing algorithm PGSA at both the user and at the cloud,
and show the results in Fig 2. In particular, we first mea-
sure the time that the user takes to complete its part of
the PPGSA algorithm, that is, the time it takes to find the
transformed QP plus the time needed to find the solution
x∗. Fig. 2(a) shows the user’s computing time for QPs with
increasing amounts of non-zero elements. We observe that
even when the QP contains a large quantity of non-zero ele-
ments the user can still finish its computing very quickly. For
example, the computing time of the user when the quadratic
coefficient matrix has 4.5×105 non-zero elements is only 34s.
Furthermore, we see that the computing time of the user is
approximately linear with regard to the number of non-zero
elements, which is practical for large-scale problems.
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Figure 2: Computing time of the PGSA algorithm
at the user and cloud for different QP sizes. (a)
Computing time at the user. (b) Computing time
at the cloud.

Besides, in Fig. 2(b), we show the time that the cloud
takes to solving the securely transformed dual problem with
different amounts of non-zero values. In particular, we mea-
sure the computing time of the iterations in PGSA as well
as the depth-first algorithm to find the connected compo-
nents. We find that the computing time of the cloud is low
even when the size of the QP is very large. For instance,
the cloud takes 324s to solve a QP with 4.5 × 105 non-zero
elements , which is practical in real-world scenarios.

Next, we investigate the computational savings offered
by our secure outsourcing algorithm PGSA. Specifically, we
compare the time when the user solves the original QP by
itself using GSA with that when the user and the cloud col-
laborate to solve it using PGSA. We first show the time
that the user takes to solve QPs with increasing amounts
of non-zero values by itself in Fig. 3, and we can see that
it has a quadratic complexity. Then, we compare the over-
all computing times of the local GSA and PGSA algorithms
in Table 1. We first observe that our secure outsourcing
algorithm PGSA has significantly shorter computing time
compared to solving the QP by the user itself with the GSA
algorithm. For example, the user by itself takes over 7000s to
solve a QP with 4.5×105 non-zeros elements in the quadratic
coefficient matrix, while the user and the cloud can collab-
oratively solve the same problem in less than 350s, which
represents a 95% reduction in computing time. This is due
to the ability of our algorithm to exploit the cloud’s exten-
sive resources and run in parallel. Notice that we are only
using a cluster with 4 nodes, and we already see significant
computing time savings for all QP sizes.
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Figure 3: Computing time of the GSA algorithm at
the user.
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Figure 4: Comparison of computing time at the
cloud and its lower bound.

7.3 Scalability
To explore the scalability of our algorithm, we compare

the computing time of the cloud with different cluster sizes
with the least computing time that we can expect. To find
this lower bound on the computing time of the cloud, we
take the cloud’s computing time with a one-node cluster
and divide it by the number of nodes in the cluster. Be-
sides, to fully explore the time savings due to parallelization
offered by our algorithm, we solve QPs that have at least ten
strongly connected components in the quadratic coefficient
matrix and hence can be potentially allocated among the
computing nodes. Fig. 4 shows both the cloud’s computing
time and the lower bound on the computing time for a QP
with 10000 variables under different cluster sizes. We ob-
serve that our algorithm is very close to the lower bound on
the computing time. Therefore, our secure outsourcing algo-
rithm is scalable, which is a crucial requirement for solution
methods for large scale problems.

8. CONCLUSIONS
In this paper, for the first time in the literature, we have

investigated the problem of securely outsourcing large-scale
quadratic programs (QPs) to the cloud. To protect the
users’ private information in their QPs, we develop a low
complexity matrix transformation scheme. Specifically, the
user conceals the QP’s non-zero elements and structure by
multiplying the non-zero elements with random numbers,
and randomly permutating the rows and columns of its ma-
trices, respectively. We show that the resulting QP is com-

putationally indistinguishable both in value and in structure
under a CPA, and thus user can confidently share it with
the cloud. Then, based on the dual problem theory and the
Gauss-Seidel algorithm, we design an iterative and parallel
algorithm PGSA to solve the transformed dual problem in
the cloud. Based on the solution to the transformed dual
problem, the user can find the solution to its original QP
with minimal computing resources. We have implemented
the proposed algorithm on the Amazon Elastic Compute
Cloud (EC2) and a laptop, and extensively evaluate its per-
formance. Our results show that the proposed algorithm can
solve large-scale QPs very efficiently, offers significant time
savings to the user, and is scalable.
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