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Abstract—Cognitive Radio (CR) technology enables secondary
users (SUs) to opportunistically access unused licensed spectrum
owned by the primary users (PUs). Therefore, it can potentially
significantly enhance communication capacity, and hence is very
encouraging in aerospace communications and deserve thorough
study. One of the key problems in cognitive aerospace communi-
cations is to determine spectrum availability. In the past, many
researchers have proposed to employ spectrum sensing to address
this issue, which, however, consumes considerable energy and
time. In this paper, we develop a deep learning system to predict
spectrum availability, which does not require a priori knowledge
of the activities of PUs. The performance of the proposed system
is analyzed through extensive simulations.
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I. INTRODUCTION

Since Federal Communications Commission (FCC) opens

the discussion on intelligently share licensed spectrum, cogni-

tive radio (CR) have emerged as a promising technology. It can

release the spectrum from shackles of authorized licenses of

primary users (PUs), and enable unlicensed users or secondary

users (SUs) to opportunistically access under-utilized licensed

spectrum in either temporal or spatial domain, as long as

their usage does not significantly impact the PUs’ service

provisioning [1] [9] [4], [5]. Due to the increasing demand on

bandwidth in aerospace communications and the dynamic na-

ture of spectrum in both spatial and temporal domains therein,

CR technology has great potential to significantly improve the

communication capacity in aerospace communications.

One of the most critical problems in CR communications

is to determine spectrum availability. Most previous works [6]

[15] address this problem by developing complicated spectrum

sensing schemes, which scan the whole spectrum to check if

any of the channels is occupied by PUs or not. Such schemes
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obviously consume tremendous energy and time, and hence

are not appropriate for aerospace communications.

Recently, some researchers propose machine learning based

methods to help carry out CR communications. Lunden et

al. [6] and Sutton et al. [12] develop reinforcement learning

algorithms to find better spectrum sensing policies. Cui et

al. [2], Huang [3], and Ramon et al. [11] design support

vector machine (SVM) based learning systems to classify PUs

and determine wireless communication parameters. However,

how to take advantage of machine learning to efficiently and

effectively determine spectrum availability is still an open and

challenging problem.

In this paper, we propose to utilize a deep learning tech-

nique, called long short-term memory (LSTM) network, to

predict spectrum availability. The main idea is to learn from

the past spectrum availability data, and exploit the intrinsic

spectral-temporal correlation among them to predict future

spectrum availability. There are a couple of works like [10]

[13] which try to predict spectrum with artificial neural

networks. These works can only make predictions based on

temporal correlations among historical data, while our system

can explore the correlation in the spectral-temporal domain

and hence is more effective.

The rest of this paper is organized as follows. Section

II describes the proposed system model for spectrum avail-

ability prediction. Section III details the proposed LSTM

based scheme, which is followed by simulation results and

discussions in Section IV. Finally, we conclude the paper in

Section V.

II. SYSTEM MODEL

In this work, we propose to make predictions on the spec-

trum availability at an arbitrary location by exploit the spectral-

temporal correlation. We divide the spectrum of interests into

spectrum bands or channels. We denote the system status

representing the spectrum availability at time t by a “multi-

hot” vector xt. Each element in xt is either 1, standing for

the corresponding channel is occupied, or 0, standing for the

corresponding channel is available to use. Denote by M as the978-1-5386-3988-7/17/$31.00 c©2017 IEEE



Fig. 1. An LSTM memory cell.

total number of channels. Then xt is a vector of dimension

M×1, where the elements equal to 1 are called “hot elements”.

We aim to predict the next spectrum availability status xt+1

based on the current and the previous spectrum availability

status, i.e., xt, xt−1, · · · , etc.

III. SPECTRUM AVAILABILITY PREDICTION

The main idea of our system is to build an LSTM network

to predict the spectrum availability by learning the spectral

correlation among the spectrum availability in the past time

slots. In what follows, we first introduce the fundamentals of

the LSTM network and then elaborate how to develop our

LSTM based system.

A. The Basic LSTM Architecture

LSTM was proposed based on the traditional RNN aim-

ing at addressing its long-term temporal dependency issue.

Particularly, although RNN can theoretically well deal with

data that are temporally correlated, it cannot handle long-term

time dependency in practice. LSTM addresses this problem by

having a memory cell, which is featured with gates as shown

in Fig.1. The gates are mathematically formulated as:

it = σ(Wixxt +Wihht−1 +Wicct−1 + bi)

ft = σ(Wfxxt +Wfhht−1 +Wfcct−1 + bf )

ct = ft ◦ ct−1 + it ◦ φ(Wcxxt +Wchht−1 + bc)

ot = σ(Woxxt +Wohht−1 +Wocct + bo)

ht = ot ◦ φ(ct)

Here, i, f , o and c denotes the input gate, forget gate, output

gate, and cell state, respectively. These gates are all of the same

dimension as the hidden vector h which is assumed to be of

N×1 dimension. σ is a sigmoid function, and φ is a nonlinear

function which maps the input to [−1, 1]. Wic, Wfc, and

Woc are the peephole connection matrices, which connect cell

state to input gate, forget gate, and output gate, respectively.

Similarly, Wix,Wfx,Wox and Wcx are the weight matrices

connecting between input vector xt and input gate, forget

gate, output gate and cell state, respectively. Besides, since

the gates and the input vector xt have the dimension of N×1
and M × 1 respectively, we can have that the dimensions

of matrices Wih,Wic,Wfh,Wfc,Wch,Woh,Woc are all

the same, which is N × N , and the dimensions of matrices

Wix,Wfx,Wcx,Wox are N ×M .

B. Our LSTM System for Spectrum Availability Prediction

1) The Main Framework: In our system, the input first goes

through the LSTM layer. The output of the LSTM layer goes

into the dense layer, i.e., a fully connected neural network,

where a dropout process is applied in training to avoid over-

fitting. Finally, we employ an activation function, which is set

to the Softmax function, and obtain the prediction result yt in

the time slot t. The system architecture is presented in Fig. 2.

Where hL
t is the output of the LSTM memory cell in the time

slot t.

We note that the input Xt in the time slot t is a matrix of

dimension M × T , which means that the system predicts the

spectrum availability in the forthcoming time slot by exploiting

the data in the most recent T time slots. In Xt, each column

represents the spectrum availability in a time slot as shown in

Fig.3.

2) LSTM Layer: In the LSTM layer, there are T LSTM

memory cells, one for each input vector xj (t−T+1 ≤ j ≤ t).

The ouput of the jth memory cell at time t, i.e., ht−j and

ct−j , is part of the input of the next, i.e., the j− 1th memory

cell. The output of the LSTM layer, i.e., the output of the last

LSTM memory cell, goes to a dense network.

3) Dense Network with Dropout: Essentially, the dense

network is a fully connected neural network as shown in the

left part of Fig. 4. In the dense network, the nodes in each layer

are fully connected to all the nodes in the previous layer. The

reason for having a dense network here is that the output of

the LSTM contains the feature information we need to make

prediction. While the dense network aims to map the feature

data to the prediction result. In this work, we build three layers

in the dense network.

During the training phase, some randomly chosen nodes in

the dense layer can be turned off given each training data as

shown in the right part of Fig. 4. This is called dropout and can

effectively help prevent the dense network from overfitting,

and enhance the prediction performance in the future.

4) Activation Function and Loss Function: In order to

calculate the final prediction output, we choose softmax as the

activation function that takes the output of the dense networks

as the output. Particularly, this activation function maps the

output of the dense networks into a vector of elements between

0 and 1, each of which represents the probability of a channel

being occupied and the sum of which equals 1. The softmax

function can be calculated as:

ym

t
=

ez
m

∑M

i=1
ez

i
, for m = 1, . . . ,M

In the equation above, z stands for the output of the dense

network zm and ym
t

represent the mth elements of the LSTM

output vector z, and that of the output yt. To map the



Fig. 2. Our LSTM system architecture with input Xt in the time slot t.

Fig. 3. The input matrix Xt.

Fig. 4. Dropout in the dense network.

probabilities into binary series, we find an optimal threshold

during the training process which minimizes the difference

between real data and the predicted ones, which are either 0s

or 1s.

Besides, in order to enable the system to learn and evolute,

we need to define a loss function. We employ the cross-

entropy as the system loss function, since the problem in this

work is basically a classification into variant labels and the

cross-entropy is widely applied and proved to be effective.

Particularly, cross-entropy can be calculated as:

ξ(xt+1,yt) = −
M∑

i=1

xi

t+1
logyi

t
,

Where, xi
t+1

and yi
t

are the ith element in xt+1 and in yt,

respectively.

IV. PERFORMANCE EVALUATION

A. Data preprocessing

In our study, the simulation data was sampled and gathered

from Share Spectrum Company [7] [8]. In particular, we

sampled the spectrum occupancy data from two spectrum

reports obtained at two locations: New York City, NY and

Vienna, VA. We study the spectrum from 3MHz to 5.4MHz
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Fig. 5. Performance comparison under different look back window sizes.

and divide the spectrum into 26 channels. According to the

spectrum report, if the signal strength detected in one channel

is lower than -100 dbm, this channel will be considered as

“idle”. Otherwise, this channel will be regarded as“busy”.

B. Simulation Settings

Our simulation settings are as follow. In the time domain,

we set a time slot to 1 minute. We set the look back window

from 15 time slots to 90 time slots. In the spectrum domain, we

predict all the channels availability, instead of predicting only

one channels availability [14]. We set the number of nodes at

the output of the LSTM layer to 128. In the dense network,

we have three dense layers, which contains 512, 256, 128

nodes respectively. Besides, there are 26 nodes at the output

layer. The reason why we set relatively large number of nodes

is that we would like the system to better characterize the

dynamic states in the spectrum occupancy and better capture

the features of the input. As mentioned before, we choose

Softmax as activation function and employ RMSprop as the

optimizer.

C. Simulation Results

With the system setting above, we evaluate the spectrum

availability prediction performance. We conduct the simula-

tions by varying our look back window length from 15 minute

to 30, 45, 60, 75, 90, respectively. We would like to find

out that with which look back window size, the system could

obtain more accurate prediction result.

We present the simulation results in Fig. 5 and Fig. 6, For

example, when the look back window size is 60, the system
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(a) Look back window of 60 minutes
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Fig. 6. Performance when the look back window size is 60 and 75.
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Fig. 7. Performance of a simple ANN model.

could achieve a good performance in predicting spectrum

availability. The true positive rate is 93.97% the true negative

rate is 96.45%, and the over all prediction accuracy is 94.06%.

Moreover, when the look back window size is 75, the system

achieves even higher overall accuracy. Particularly the true

positive rate is 89.17%, the true negative rate is 98.5% and the

over all prediction accuracy is 98.14%. Finally, we compare

our performance with that of the basic ANN prediction model.

We choose a three-layer ANN model with 512, 256 and

128 nodes respectively. We apply the same training and test

processes with the same data sets, and show the performance

results in Fig.7. The true positive rate is only 61.39% and the

overall accuracy is only 82.77%. We can clearly see that our

system well outperforms the ANN model.

V. CONCLUSION

In this paper, we have proposed a spectrum availability

prediction system based on LSTM neural networks. We em-

ploy the LSTM networks to exploit the spectral-temporal

correlation among historical spectrum availability data in order

to make predictions. We have also carried out simulations to

evaluate the performance of the proposed system. Results show

that our overall prediction accuracy can be up to about 98%.
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