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Abstract—In traditional power networks, energy theft is a
significant problem that causes severe financial losses to utility
companies and legitimate users, jeopardizes system stability, and
enables other illegal activities. Recently, governments and utility
companies propose the Smart Grid as the next generation electric
network to improve the current grid’s efficiency, reliability, and
security. In the Smart Grid, smart meters are deployed at users’
premises to facilitate data collection, system control, etc. However,
smart meters are vulnerable to cyber attacks, thus enabling easier
energy pilfering. In this paper, we model the amount of energy
stolen by a smart meter as a measurement bias, and propose an
energy theft detection algorithm based on state estimation. In
particular, our algorithm employs weighted least squares (WLS)
state estimation, and can identify all the energy thieves in the
system. We conduct extensive simulations in IEEE 13-bus and
123-bus test systems to validate our algorithm.

I. INTRODUCTION

In traditional power networks, energy theft is a significant
problem that causes financial losses to utility companies and
legitimate users, jeopardizes system stability, and enables other
illegal activities. Currently, utility companies in the U.S. and
Canada estimate the revenue losses caused by energy theft
to be more than $6 billion every year [1] [2], while in
developing countries energy theft can amount to 50% of the
total energy delivered [3]. Large revenue losses usually force
utility companies to increase energy rates on legitimate users,
which raise their energy costs. Besides, energy theft often
leads to excessive energy consumption, which may cause
equipment malfunction or damage [4], and enables other
criminal activities, such as illegal production of controlled
substances [2].

Recently, utility companies and governments propose the
the Smart Grid to modernize the current electric gird and
improve its efficiency, reliability, and security. In the smart
grid, system operators are expected to replace traditional
meters with cyber-physical devices, called smart meters. Smart
meters are capable of taking power, current, and voltage
phasor measurements, and reporting them to the system op-
erator through a real-time, two-way communication network.
This allows the implementation of novel energy-efficiency
practices, for example demand response (DR) programs and
microgrids. In DR programs, system operators can shape daily
load demand curves, by using real-time pricing as an incentive
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for users to modify their consumption patterns. In the long
run, DR programs reduce the required generation capacity to
safely meet peak load demand, and defer investments in new
power plants. Besides, a microgrid is a cluster of distributed
generators, energy storage decvices, and energy loads within
a distribution network that is able to operate either as part of
the main grid (i.e., in grid-connected mode) or independently
(i.e., in island mode). Microgrids reduce power losses at the
transmission level by bringing generation closer to the loads,
and allowing users to sell energy back to the grid. However,
in microgrids, energy thieves can exploit smart meters’ cyber
vulnerabilities [5], and not only report fraudulent energy
consumption, but also submit fake energy production reports
to receive illegal payments. For example, in Virginia, Danville
Utilities reports a growing problem with people tampering
with smart meters [6]. Therefore, in microgrids, fraudulent
users may be able to commit energy-theft more easily, and thus
energy theft is a more serious problem in smart grids than in
traditional power grids which demands careful consideration
from the research community.

In this paper, we propose an energy theft detection algorithm
based on state estimation that can identify all the pirate users
in the network. Specifically, we model the amount of energy
stolen by a smart meter as a measurement bias. Then, we
employ weighted least squares to optimally estimate all the
measurement biases. A zero bias represents a truthful smart
meter, while a non-zero bias indicates a fraudulent meter.

The rest of the paper is organized as follows. In Section II,
we describe some previous works on energy theft detecion.
Section III introduces the considered microgrid architecture,
our mathematical models for power distribution and energy
theft, and the threat model. In Section IV we describe in detail
our energy theft detection algorithm. We conduct simulations
in Section V to evaluate the performance of our algorithm. We
finally conclude this paper in Section VI.

II. RELATED WORKS

Some research has been conducted to investigate the energy
theft problem in smart grids. McLaughlin et al. [7] apply a
data mining technique called Non-Intrusive Load Monitoring
(NILM) to detect energy theft. They collect cyber-intrusion
and physical-intrusion logs, and analyze users’ load profiles.
They generate a list of possible energy thieves with a minimum
amount of false positives using an attack graph based fusion
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algorithm. Cárdenas et al. [8] formulate a statistical anomaly
detection scheme and then model the interactions between the
utility company and the fraudulent users with a game. The
utility company aims to maximize its profit and minimize the
cost of detecting pirate users, while energy thieves’s objective
is to minimize the likelihood of being detected subject to a
constraint related to the amount of stolen energy. Mashima
and Cárdenas [9] evaluate the accuracy of anomaly detectors
by using a novel threat model and several statistical metrics.
Pereira et. al [10] find energy thieves by analyzing fine-grained
load profiles from users’ smart meters with a neural network
classifier called charged system search. Huang et. al [11]
propose an algorithm that first finds out a fraudulent user’s
transformer, and then tries to identify the particular fraudulent
user by analyzing the energy consumption variance of all the
users connected to the transformer. Weckx et al. [12] can find
energy thieves by modeling a distribution network as a linear
equation, only if all the voltage measurements and some initial
power measurements are authentic, i.e., not tampered by the
energy thieves. Unfortunately, we find that all these techniques
have low detection rates.

In our previous works [13], [14], we propose several energy
theft detection algorithms utilizing distributed matrix decom-
positions. However, our previous works assume that typical
power line losses are known by the system operator, which
may be difficult to obtain in practice. In this paper, we propose
a new state estimation based energy theft detection scheme that
can successfully identify pirate users in a microgrid, while
taking into account power losses. We model the amount of
stolen energy by a smart meter as a measurement bias and
employ weighted least squares (WLS) estimation to solve for
all the meters’ biases. Thus, a zero bias indicates a faithful
meter, and a non-zero one identifies a pirate meter.

III. SYSTEM MODEL

A. Microgrid Architecture
As shown in Fig. 1, we consider an electric power microgrid

(MG) consisting of a set of buses I = {0, 1, 2 . . . , n} equipped
with distributed generations (DGs), and a set of line segments
J = {1, 2, . . . ,m} which connect the buses together and are
used to model the power lines and transformers in the network.
We assume a radial system denoted by graph G = {I,J },
where buses are the vertices with bus 0 being the root, and
line segments are the edges. Note that in this case m = n.
Particularly, bus 0 represents the substation which serves as
the interconnection between the macrogrid and the MG. It is
operated by a third-party, called the MG operator (e.g., a utility
company, or a community manager).

Besides, smart meters are installed on user buses to take
power, current, and voltage measurements [15] [16] and are
able to communicate with each other by forming a multihop
mesh communication network [17]. The MG operator controls
a network device to engage in two-way communications
with the smart meter network, and performs monitoring and
control actions such as state estimation, billing, and demand
response. In this paper, we leverage the measurements and
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Fig. 1. The architecture for a radial microgrid.

communication capabilities of smart meters to detect energy
thieves in microgrids.

B. A Power Network Model for Microgrids

In what follows, we model the steady-state currents and
voltages in the MG. Specifically, suppose that user i is con-
nected to the power grid through a three-phase, bi-directional
connection at bus i, which it employs to serve its load demand
and supply the MG with energy generated by its DG. Thus, we
can calculate the three-phase voltage at bus i with respect to
the upstream node, bus i′, using Kirchoff’s voltage law [18]:
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where aφ,φ
′

i′,i (φ, φ′ ∈ {1, 2, 3} denote the phases) models
the impact of V φ′

i′ on V φ
i due to the impedance of the line

segment between bus i′ and bus i (denoted by (i′, i)), zφ,φ
′

i′,i ’s
are the elements of the line segment’s impedance matrix,
Vi = [V 1

i V 2

i V 3

i ]
⊤ is the three-phase voltage vector at bus i,

and Ii = [I1i I2i I3i ]
⊤ is the three-phase current vector arriving

at bus i, respectively. We assume that power lines are less than
one mile long, and thus shunt admittance can be neglected. (1)
can also be rewritten in matrix form as follows:

Vi = Ai′,iVi′ − Zi′,iIi (2)

Recall that line segments represent power lines and trans-
formers. For a power line segment (i′, i), matrix Ai′,i is equal
to the identity matrix and matrix Zi′,i is diagonal. For a
transformer line segment (i′, i), Ai′,i can be calculated as

Ai′,i =
1

ni′,i
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where ni′,i is the turns ratio of the transformer, and aφ,φ
′

i′,i ∈
{0, 1,−1} depending on the transformer’s connection type
(e.g., delta-grounded wye, wye-delta).

In practice, there is rarely more than one transformer
between substations and meters. When there is one transformer
in the path between bus 0 and bus i, say in the line segment
between bus p (closer to bus 0) and bus h (closer to bus i),
(2) can be further rewritten in the following:

Vi = Ap,h(V0 −
∑

j∈Pi

Zj′,jIj)−
∑

k∈Hi

Zk′,kIk (4)

where Pi is the set of all the buses on the path from bus 0 to
bus p (excluding bus 0), Hi is the set of all the buses on the
path from bus h to bus i, j′ is the upstream node of j, and k′

is the upstream node of k, respectively. In the case that there is
no transformer between bus 0 and bus i, then Ap,h is equal to
the identity matrix, P contains the set of all the buses on the
path from bus 0 to bus i (excluding bus 0), and H is empty.
Note that we assume the voltage and current at the substation
bus are constant and known to the MG operator. Besides, the
parameters of the power lines and the transformer are known
to the MG operator and the smart meters.

Moreover, the three-phase load current consumed or pro-
duced at bus i can be calculated according to Kirchoff’s
current law as follows:

Li = Ii −
∑

r∈Ri

Ir −
∑

q∈Qi

Bi,qIq (5)

where Ii is the current arriving to bus i, Ri and Qi are the set
of downstream buses of bus i connected by power lines and
that connected by transformer line segments, respectively. In
addition, matrix Bi,q is as follows:

Bi,q =
1

ni,q
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where bφ,φ
′

j ∈ {0, 1,−1} depends on the transformer’s con-
nection type.

In addition, the power consumed by the load at bus i is
related to the load current Li as follows

Li =
(Pi + jQi)

∗

Vi
(6)

where Pi and Qi are the three-phase real and reactive power
consumption vectors at bus i, respectively. The ∗ operator
denotes the complex conjugate operation.

C. Compromised Measurement Model
The MG operator instructs smart meters to take and report

synchronized measurements at specified time instances to
facilitate energy theft detection. The objective of a dishonest
user is to steal energy but not get caught. To that end, it needs
to manipulate its measurements in such a way that its power,
current, and voltage reports are consistent with each other. In
this paper, we assume energy thieves are able to compromise
all functions of their smart meters, including measurement

taking and reporting, which makes energy theft detection a
more challenging problem.

Denote by bi the current that an energy thief at bus i
intends to steal, which we call “the current measurement bias”
controlled by the energy thief. Then, the load measurement at
bus i, denoted by L′

i, is

L′
i = Ii − bi −

∑

r∈Ri

Ir −
∑

q∈Qi

Bi,qIq. (7)

Note that an honest user j’s load measurement is given by
L′

j = Lj , since bj = 0 for an honest user.
Besides, the energy thief i has to tamper its voltage mea-

surement as well in order not to be easily detected. The
reason is that if the energy thief i does not, all true currents
can be computed based on equation (2) and compared to the
reported ones, making itself very easy to be detected. Thus, by
pretending that the incoming current is I′i = Ii − bi instead
of Ii, according to (2) the energy thief i can set its voltage
measurement to be

V′
i = Ap,h(V0−

∑

j∈Pi

Zj′,jIj)−
∑

k∈Hi

Zk′,kIk +Zi′,ibi (8)

Clearly, an honest user’s voltage measurement is V′
i = Vi.

IV. OPTIMAL STATE ESTIMATION FOR ENERGY THEFT
DETECTION

State estimation finds the most likely state of a process
by minimizing the sum of the squares of the differences
between observed values and the calculated state [19]. In this
section, we propose an state estimation algorithm to find line
segment currents and measurement biases, which can be used
to identify energy thieves as explained in Section III-C, using
voltage and current observations. Our algorithm employs the
technique of weighted least squares (WLS) [20] to solve our
estimation problem.

Recall that we denote the voltage at the substation by V0.
We define an augmented state vector of line segment currents
and biases as

x = [V0 I1 I2 . . . In b1 b2 . . . bn]
⊤

. Then, the vector of load current and voltage measurements,
denoted by

y = [V′
0 I′1L

′
1L

′
2 . . . V′

1V
′
2 . . . V′

n]
⊤,

can be expressed as follows:

y = h(x) + e. (9)

where h(x) is a function that determines the measurement
vector y given the system state variable vector x according to
equations (7) and (8), and e is a measurement error vector,
the elements of which are three-phase measurement error
vectors that are independent of each other. Specifically, the
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measurements in y are:

V′
0 = V0 + eV0

I′1 = I1 + eI1

L′
i = Ii − bi −

∑
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Ir −
∑
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∀i ∈ [1, n]
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i = Ap,h(V0 −

∑

j∈Pi

Zj′,jIj)

−
∑

k∈Hi

Zk′,kIk + Zibi + eVi
∀i ∈ [1, n]

(10)

We can see from (10) that (9) is linear and can be expressed
as

y = Haugx+ e (11)

where matrix Haug is the Jacobian matrix of h(x) with respect
to x and can be calculated as follows (note that ∂h(x)/∂x =
∂y/∂x)
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The first two rows are related to V0 and I1, where the partial
derivatives ∂V0

∂V0

and ∂I1
∂I1

are equal to 1 (a 3×3 identity matrix)
and the rest elements are equal to zero. The rows in the middle
section of Haug correspond to load current measurements,
where the elements are calculated by taking the first order
partial derivative of L′

i with respect to Ij or bj , i.e.,
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0, otherwise
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where 1 is a 3 × 3 identity matrix, and 0 is a 3 × 3
zero matrix. The entries in the bottom section of Haug are
obtained by taking the first-order partial derivative of voltage
measurements with respect to state variables Ij and bj as
follows:

∂V′
i

∂Ij
=











−Ap,hZj′,j , if j ∈ Pi

−Zj′,j, if j ∈ Hi

0, otherwise
(14)

∂V′
i

∂bj

=

{

Zj′,j, if i = j

0, otherwise
(15)

According to WLS, the system operator intends to minimize
the weighted sum of the squares of the differences between
measurements and calculated values [19], i.e.,

J(x) =
1

2
[y −Haug(x)]

⊤R−1[y −Haug(x)] (16)

where R is the covariance matrix of the measurement error
vector, i.e., R = E[ee⊤].

The first order optimal condition can be obtained by taking
the first-order partial derivative of (16) with respect to the
augmented state vectorx, that is

∂J(x)

∂x
= −H⊤

augR
−1[y −Haug(x)] = 0 (17)

The second order optimal condition is given by the second
order partial derivative of (17) with respect to x, i.e.,

∂2J(x)

∂x2
= H⊤

augR
−1Haug (18)

which is positive semi-definite. Hence, (17) is an optimal
condition to find the minimum value of (16).

The MG operator can find the energy thieves as follows.
First, the MG operator collects smart meters’ measurement
vector y.

Second, it applies the best unbiased linear estimator to solve
for x in equation (17), i.e.,

x̂ = (H⊤
augR

−1Haug)
−1H⊤

augR
−1y

= Naugy
(19)

where ˆ denotes estimated values, and Naug is a constant in
the estimator.

Third, the system operator examines bias estimates b̂φi
(∀i, φ) and determines that users with b̂φi greater than a
predefined parameter ǫ are energy thieves. This parameter is a
multiple of the standard deviation of the largest bias estimate
error, i.e.,

ǫ = k ×max
i,φ

Var[bφi − b̂φi ]
1/2,

where k is a positive integer. Particularly, we can find the
estimates’ error variance as follows:

Var[x− x̂] = E[(x − x̂)(x− x̂)⊤]

= E[xx⊤]− E[xx̂⊤]− E[x̂x⊤] + E[x̂x̂⊤].

= NaugE[ee
⊤]N⊤

aug

The final step is due to the fact that NaugHaug is equal
to the identity matrix. Thus, since E[ee⊤] = R, we have
Var[bφi − b̂φi ] = n

φ
i Rn

φ⊤
i where n

φ
i is the row vector of

Naug corresponding to the ith bias on phase φ.
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V. SIMULATION RESULTS

In this section, we employ our proposed algorithm to
find energy thieves in the IEEE 13-bus and IEEE 123-bus
distribution test systems shown in Fig. 2 and Fig. 3, respec-
tively. We use the line segment and bus load information of
both systems contained in [21]. Besides, in the IEEE 13-
bus system, we ignore the voltage regulator between buses
632 and 650, consider the switch between buses 671 and
692 to be closed, and use the load demand presented in
Table I. In the IEEE 123-bus system, we also ignore the
voltage regulators and consider closed switches between buses
150− 149, 13− 152, 54− 94, 18− 135, and generate random
loads for all buses that we omit for brevity. Both systems
are radial networks with unbalanced loads, which makes them
realistic scenarios for a microgrid.

Fig. 2. The IEEE 13-bus test system

Fig. 3. The IEEE 123-bus test system

First, to generate the true state of the system, we cal-
culate load currents, line currents, and bus voltages using
the ladder iterative technique in [18]. We then generate, for
each bus, three-phase load current and three-phase voltage
measurements, with biases and normally distributed errors.

TABLE I
IEEE 13-BUS LOADS

Phase φ = 1 φ = 1 φ = 2 φ = 2 φ = 3 φ = 3

Bus (kW) (kVar) (kW) (kVar) (kW) (kVar)
634 160 110 120 90 120 90
645 0 0 170 125 0 0
646 0 0 230 132 0 0
652 128 86 0 0 0 0
671 385 220 385 220 385 220
675 485 190 68 60 290 212
692 0 0 0 0 170 151
611 0 0 0 0 170 80

TABLE II
THE BIAS THRESHOLD ǫ

Parameter 13-bus 123-bus
Measurement Variance 0.0023 0.0023

ǫ 0.45 4.23
Probability a user steals energy 0.3 0.3

Bias magnitude interval [3,10] [3,10]

The current and voltage measurements’ errors have zero mean
and variances equal to 0.0023. The probability of a user bus
having a non-zero measurement bias on any of its phases, i.e.,
the probability of a user deciding to steal energy, is set to 0.3.
Each energy thief’s measurement bias magnitude is uniformly
chosen from the interval [3, 10]A and has the same angle as
its corresponding phase. The substation measurements have
zero biases with probability 1. Finally, we omit certain bias
estimates of users who are connected to less than three phases.

Moreover, we set the bias threshold

ǫ = k ×max
i,φ

(nφ
i Rn

φ⊤
i )1/2

by choosing k = 4, which makes it 0.43 and 4.23 for the
13-bus system and 123-bus system, respectively. Note that
since the measurement error follows a Gaussian distribution,
choosing k > 3 sets a threshold that is larger than any honest
user’s bias estimation error with a very high probability. In
contrast, since energy thieves’ true biases are usually much
larger than ǫ, their bias estimates are larger than ǫ with a very
high probability as well. Table II summarizes our simulation
parameters.

A. IEEE 13-bus Test System

Fig. 4 compares bias estimates obtained by the proposed
algorithm to their true values, for all users and all phases.
It is clear that the estimated biases closely correspond to the
true values. Moreover, the threshold ǫ correctly differentiates
energy thieves from honest users, i.e., the bias estimates for
honest users are smaller than ǫ and the bias estimates for
energy thieves are larger than ǫ.

B. IEEE 123-bus Test System

Fig. 5 compares bias estimates of the proposed algorithm to
their true values. We find that estimated biases are very close to
their true values, thus correctly identifying the energy thieves.
We also observe that the value for ǫ correctly differentiates
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Fig. 4. Energy theft detection in the 13-bus system.
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Fig. 5. Energy theft detection in the 123-bus system.

between fraudulent and legitimate measurements, as in the 13-
bus case.

VI. CONCLUSIONS

In this paper, we have investigated energy theft detection
in microgrids by employing a realistic model for the power
system. A key characteristic of microgrids is the use of cyber-
physical devices for energy metering, called smart meters. We
model the amount of stolen energy by a smart meter as a
measurement bias, and propose an algorithm that optimally
estimates all the smart meters’ biases. A zero bias indicates a
faithful meter, and a non-zero one identifies a pirate meter. Our
proposed energy theft detection algorithm utilizes weighted
least squares and can find all the energy thieves in the
network. We have validated our algorithm through extensive
simulations.
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