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Abstract—The rapid growth of wireless devices and services
exacerbates the problem of spectrum scarcity in wireless net-
works. Recently, spectrum auction has emerged as one of the
most promising techniques to enhance spectrum utilizationand
mitigate this problem. Although there exist some works studying
spectrum auction, most of them are designed for single-hop
communications, and it is usually not clear whom a winning user
communicates with. Moreover, most previous auction schemes
only focus on satisfying the incentive compatibility property, also
called truthfulness, but ignore another two critical properties:
individual rationality, and budget balance. Thus, they may not
be economic-robust. In this paper, we propose a transmission
opportunity auction scheme, called TOA, which can support
multi-hop data traffic, ensure economic-robustness, and generate
high revenue for the auctioneer. Specifically, in TOA, instead
of spectrum bands as in traditional spectrum auction schemes,
users bid for transmission opportunities (TOs). A TO is defined as
the permit of data transmission on a specific link using a certain
band, i.e., a link-band pair. The TOA scheme is composed of three
procedures: TO allocation, TO scheduling, and pricing, which are
performed sequentially and iteratively until the aforementioned
goals are reached. We prove that TOA is economic-robust,
and conduct extensive simulations to show its effectiveness and
efficiency.

I. I NTRODUCTION

The past few years have witnessed substantial growth of
wireless devices and services, which, on the other hand, makes
spectrum an even more scare resource in wireless networks.
Traditional spectrum allocation was conducted in a static
manner, resulting in inefficient spectrum utilization. Recently,
spectrum sharing through a dynamic real-time secondary spec-
trum auction market has been proposed to enhance spectrum
utilization and mitigate the problem of spectrum scarcity.In
such a market, a spectrum owner or primary user (PU) leases
its idle licensed spectrum bands to secondary users (SUs) to
gain profits. SUs, who do not have their own spectrums but
need to deliver data traffic, compete for spectrum bands and
pay for them if they succeed in the spectrum auction.

In the literature, there have been some works studying
spectrum auction in wireless networks. Unfortunately, most
of them [1]–[11] are only suitable for single-hop data trans-
mission. In particular, in these schemes, each user bids andis
allowed to use the purchased spectrum for communications if
it wins. However, there are two problems: first, this is only
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for single-hop communications, and second, it is not clear
whom a winning user communicates with (the receiver is not
clearly specified). Thus, the network performance can be poor.
Zhu et al. [12] discuss spectrum auction for multi-hop data
delivery. But they assume that each secondary network only
has one flow, and do not consider time domain scheduling
when utilizing the spectrums.

Moreover, in addition to fulfilling SUs’ traffic demands,
auction schemes need to satisfy certain economic properties.
Specifically, incentive compatibility (IC) (also called truthful-
ness or strategy-proof), individual rationality (IR), andbudget
balance (BB) are three of the most critical properties in auction
design. An auction is called economic-robust [8], [13] if all
these three properties are preserved. It has been shown both
theoretically and practically that an auction could be vulnera-
ble to market manipulation and produce very poor outcomes if
those properties are not guaranteed [14]. Most previous auction
schemes focus on IC only, but do not necessarily satisfy the
other two properties.

In this paper, we aim to design an economic-robust auction
scheme for multi-hop wireless networks. In particular, we
consider an auction market where a PU acts as an auctioneer
and leases its idle licensed spectrum bands to some SUs, which
are deployed by a secondary service provider (SSP) to fulfill
certain purposes, such as data delivery, data collection, and
object tracking. SUs may need to transmit data to their desti-
nations that are multiple hops away. To deliver the data traffic,
the SSP asks all the SUs to submit bids to the auctioneer. If
some SUs win, they pay a price to the auctioneer and relay
data traffic for each other using the spectrum purchased. The
SSP finally pays back all the winning SUs, and lets them gain
some profits so that they are motivated to participate in the
auction.

To support multi-hop data traffic, ensure economic-
robustness, and generate high revenue for the auctioneer, we
propose a transmission opportunity auction scheme, called
TOA. In TOA, instead of spectrum bands as in traditional
spectrum auction schemes, SUs bid for transmission opportu-
nities (TOs). A TO is defined as the permit of data transmission
on a specific link using a certain band, i.e., a link-band pair.
The TOA scheme is mainly composed of three procedures: TO
allocation, TO scheduling, and pricing. These three procedures
are performed sequentially and iteratively until the aforemen-
tioned goals are reached. Specifically, in TO allocation, in



each iteration the auctioneer solves a TO allocation (TO-AL)
optimization problem to find out the link-band pairs (i.e., TOs)
that can be active at the same time and have the highest total
bid. It considers the set of the transmitters in these TOs as a
winning virtual bidder group (VBG). In TO scheduling, the
auctioneer formulates a minimum length scheduling problem,
called TO scheduling (TO-SC), to see if the winning VBGs
found so far can support the traffic demand in the network by
exploring scheduling (in both time and frequency domains)
and routing. If the minimum scheduling length is larger than
1, it means that the current winning VBGs cannot support
the traffic demand, and the auctioneer needs to find another
VBG through TO-AL again. Otherwise, the auctioneer can
then determine the clearing price for each winning VBG and
SU, and computes its own revenue. The auctioneer finally
chooses the iteration, i.e., the winning VBGs, that can generate
the highest revenue among the results it obtains.

Moreover, notice that our auction scheme TOA is developed
based on second-price sealed-bid auction [15]. We prove that
TOA is economic-robust for VBGs and individual SUs.

The rest of this paper is organized as follows. We discuss re-
lated work in Section II. The problem formulation is presented
in Section III. We detail the proposed transmission opportunity
auction (TOA) scheme in Section IV, and prove the economic-
robustness of TOA in Section V, respectively. We conduct
simulations in Section VI to evaluate the performance of TOA.
We finally conclude this paper in Section VII.

II. RELATED WORK

Auction has been employed by the Federal Communications
Commission (FCC) to efficiently allocate spectrum resources
[16]. Based on this idea, some works propose to apply auction
to spectrum sharing in wireless networks.

Kloeck et al. [1] consider a multi-unit sealed-bid auction
for efficient spectrum allocation. Huanget al. [11] propose
an auction mechanism which allows users to bid for their
transmission power to efficiently share the spectrum. Gandhi
et al. [2] design an auction scheme considering spectrum reuse
in wireless networks. However, all the above works ignore the
possible strategic behavior of bidders. Zhouet al. [10] then
propose a truthful spectrum auction scheme VERITAS with
greedy channel assignment and critical value based pricing. Jia
et al. [3] discuss how to generate maximum expected revenue,
which is an alternate goal of maximum social welfare, in
spectrum auction while satisfying the truthfulness property.
In order to further improve the expected revenue, Al-Ayyoub
et al. [6] design a color-based channel allocation scheme.
Taking fairness in channel allocation into account, Gopinathan
et al. [7] develop a truthful auction protocol by applying
linear programming techniques to balance the social welfare
and max-min fairness in secondary spectrum markets. In
addition to single-sided auction, some works employ double
auction in spectrum market, where multiple spectrum owners
compete with each other to sell idle spectrums for profit.
Zhou and Zheng [8] propose a framework TRUST for truthful
double spectrum auction enabling spectrum reuse. Wanget
al. [9] design a truthful double auction scheme considering

that spectrums are tradable only within their licensed areas.
However, these two works assume each seller can only sell
one channel and each buyer can buy one channel at most.
This limits the utility of both buyers and sellers, as well as
the revenue of the auctioneer.

Most importantly, all the above works are only suitable for
single-hop data transmission. Although Zhuet al. [12] discuss
spectrum auction for multi-hop data delivery, they assume that
each secondary network only has one flow, and do not consider
time domain scheduling when utilizing the spectrums.

III. PROBLEM FORMULATION

A. System Model

We consider an auction market where a spectrum owner or
primary user (PU) acts as an auctioneer and leases its idle li-
censed spectrum bandsM = {1, 2, ...,m, ...,M} to secondary
users (SUs)N = {1, 2, ...n, ..., N}. The SUs are deployed by
a secondary service provider (SSP) to fulfill some purposes
such as data delivery, data collection, and object tracking. In
this study, we assume that each SU is equipped with one radio,
which means it cannot transmit and receive simultaneously.
Suppose there are a set ofL = {1, 2, ..., l, ...L} sessions in
the secondary network. We lets(l), d(l), andr(l) denote the
source node, destination node, and traffic demand of session
l ∈ L, respectively. To deliver the traffics, the SSP asks all
the SUs to submit bids to the auctioneer for transmission
opportunities (TOs), each of which is defined as the permit
of data transmission on a specific link using a certain band,
i.e., a link-band pair. If some SUs win, they pay a price to the
auctioneer and relay data traffic for each other with obtained
TOs. The SSP finally pays back all the winning SUs and lets
them gain some profits.

Given the network topology, the PU can construct a conflict
graph denoted byG(V,E), where V is the vertex set and
E is the edge set. In particular, each vertex corresponds to
a link-band pair denoted by((i, j),m), where i ∈ N , j ∈
T m
i , andm ∈ M. Here,T m

i is the set of SUs within SU
i’s transmission range on bandm. Besides, two vertices inV
are connected with an undirected edge if the corresponding
link-band pairs interfere with each other, i.e., if any of the
following conditions is true:

• The receiving SU in one link-band pair is within the
interference range of the transmitting SU in another link-
band pair, given that the both of them are using the same
band;

• The two link-band pairs have at least one node in com-
mon.

In this conflict graph, an independent set (IS) is a set in which
each element is a link-band pair standing for a transmission,
and all the elements (or transmissions) can be carried out
successfully at the same time. If adding any more link-band
pairs into an IS results in a non-independent one, this IS
is defined as a maximum independent set (MIS). We denote
the set of all the MISs byI = {I1, I2, ...Iq, ..., IQ}, where
Q = |I|, and Iq ⊆ V for 1 ≤ q ≤ Q. We will show later
that we do not really need to find all the MISs. We denote the



MIS Iq ’s time share (out of unit time 1) to be active byλq

(λq ≥ 0). Therefore, if all the data traffics in the network can
be supported, we have

∑Q
q=1 λq ≤ 1. Besides, we letcmij (Iq)

be the instantaneous transmission rate of the link-band pair
((i, j),m) when MIS Iq is active. Thus,cmij (Iq) is equal to
0 when((i, j),m) 6∈ Iq, and the capacity of((i, j),m), i.e.,
cmij , otherwise, which will be introduced soon.

Moreover, we denote an SUi’s real valuation of and bid
price for unit instantaneous transmission rate byvi and pi,
respectively. Note thatvi can be the rewards SUi receives
from the SSP if it wins. In an auction, SUs submit their
bids pi’s in a sealed manner, so that no one has access to
any information about the others’ bids. After the auctioneer
receives all the bids, it divides the bidders into differentvirtual
bidder groups (VBGs), each of which is the set of transmitters
of all link-band pairs in one MIS. Similarly, we denote the set
of all the VBGs byG = {G1,G2, ...,Gq, ...,GQ}. Obviously,
we have|I| = |G| = Q. Then, with SUs’ unit valuations
and unit bid prices, the auctioneer can then calculate SUs’
equivalent valuationsof andequivalent bidsfor different TOs.
Notice that in one MIS, any SU can have at most one TO. Let
vqi denote SUi’s equivalent valuation of the TO it can obtain
from Iq. Then, we can havevqi = vi ·

∑

m∈M

∑

j∈T m
i

cmij (Iq).
Accordingly, SUi’s equivalent bid for the same TO, denoted
by bqi , can be calculated asbqi = pi ·

∑

m∈M

∑

j∈T m
i

cmij (Iq).
The auctioneer considers VBGs as virtual bidders in the

auction.Thevirtual bid from a VBG is the sum of all SUs’
equivalent bids in the group. In particular, letBq denote the
virtual bid from VBG Gq (1 ≤ q ≤ Q). Then, we haveBq =
∑

i∈Gq
bqi . Denote byB−q the vector of the virtual bids from

the other VBGsG/Gq. Thus, the entire bid price set, denoted
by B, is B = (Bq,B−q). Besides, denote byGW the set
of the winning VBGs, andIW the set of the corresponding
winning MISs. Notice that an SU can be involved in multiple
winning VBGs. Thus, SUi’s total equivalent bidfor the TOs
it obtains, denoted bybi, is equal tobi =

∑

Gq∈GW
bqi . Note

that bqi = 0 if i 6∈ Gq.

B. Objective of Auction Design

The design of auction schemes heavily depends on the
desired properties. In this paper, we assume that all SUs are
strategic in the sense that they may manipulate their bids to
obtain favorable outcomes. Denote byci (i ∈ N ) the clearing
price the auctioneer charges SUi for unit instantaneous
transmission rate. We aim to design an auction scheme that
can satisfy three of the most important economic requirements:
Incentive Compatibility (IC), Individual Rationality (IR) and
Budget Balance (BB), which are defined as follows:

• Incentive Compatibility (IC) : The utility function of SU
i (i ∈ N ), is a function of all the bids:

ui(pi,p−i) =







[
∑

Gq∈GW

∑

m∈M

∑

j∈T m
i

cmij (Iq)
]

·(vi − ci), if i wins with unit bidpi,
0, otherwise.

(1)

wherep−i denotes the vector of bids from the other SUs.
Thus, an auction is IC if for any SUi (i ∈ N ) with any

pi 6= vi while the others’ bids are fixed, we have

ui(pi,p−i) ≤ ui(vi,p−i). (2)

• Individual Rationality (IR) : An auction is IR, if no
bidder is charged higher than its bid in the auction, i.e.,
ci ≤ pi for all i ∈ N .

• Budget Balanced (BB): To make the auction self-
sustained without any external subsidies, the generated
revenue of the auctioneer, i.e., the PU, is required to be
non-negative.

We say an auction iseconomic-robust[8], [13] if it is
incentive compatible, individually rational and budget bal-
anced. Since in this paper, we consider that the PU leases its
own idle spectrum bands without causing quality degradation
to its own services, the PU’s revenue is the total payment
received from the winning SUs, which is always non-negative.
Thus, our auction scheme is always BB. We will focus on
achieving IC and IR in our auction scheme design. Moreover,
an auction scheme is said to besystem-efficientif the revenue
of auctioneer is maximized. Unfortunately, according to the
impossibility theorem demonstrated in [17], an auction cannot
be economic-robust and system-efficient at the same time.
Therefore, in this study we aim to design an economic-robust
auction, while try to generate high revenue for the auctioneer.

C. Transmission Opportunity’s Capacity

Suppose the power spectral density of SUi on bandm is
a constant and denoted byPm

i . A widely used model [18]
for power propagation gain between SUi and SUj, denoted
by gij , is gi,j = C · [d(i, j)]−γ , where i and j also denote
the positions of SUi and SUj, respectively,d(i, j) refers to
the Euclidean distance betweeni and j, γ is the path loss
factor, andC is a constant related to the antenna profiles
of the transmitter and the receiver, wavelength, and so on.
We assume that the data transmission is successful only if
the received power spectral density at the receiver exceedsa
thresholdPm

T . Meanwhile, we assume interference becomes
non-negligible only if it produces a power spectral density
over a threshold ofPm

I at the receiver. Thus, the transmission
range of SUi on bandm is Ri,m

T = (CPm
i /Pm

T )1/γ , which
comes fromC(Ri,m

T )−γ · Pm
i = Pm

T . Similarly, based on the
interference thresholdPm

I (Pm
I ≤ Pm

T ), the interference range
of SU i is Ri,m

I = (CPm
i /Pm

I )1/γ , which is no smaller than
Ri,m

T . Thus, different SUs may have different transmission
ranges/interference ranges on different channels with different
transmission power.

In addition, according to the Shannon-Hartley theorem, if
SU i sends data to SUj on link (i, j) using bandm, the
capacity of the TO, i.e., link-band pair((i, j),m), is

cmij = Wm log2

(

1 +
gijP

m
i

η

)

, (3)

where η is the thermal noise at the receiver. Note that the
denominator inside the log function only containsη. This is
because of one of our interference constraints, i.e., when node
i is transmitting to nodej on bandm, all the other neighbors
of node j within its interference range are prohibited from



using this band. We will address the interference constraints
in details in the following section.

IV. T RANSMISSION OPPORTUNITYAUCTION

In this section, we introduce our proposed transmission
opportunity auction scheme, called TOA. Recall that in the
network there are SUs who need to deliver data traffic to their
destinations that are multiple hops away. Thus, the objective of
TOA is to choose MISs, and hence VBGs, which can support
such traffics and bring high revenue to the auctioneer. Mean-
while, TOA should be economic-robust. In general, the TOA
scheme is composed of three procedures: TO allocation, TO
scheduling, and pricing. These three procedures are performed
sequentially and iteratively until our goals are reached. In
what follows, we detail the design of the three procedures,
respectively.

A. Transmission Opportunity Allocation

At the beginning of TO auction, each SUi (i ∈ N ) submits
its unit bid pricepi to the auctioneer. Then, as mentioned
before, the auctioneer can calculate SUi’s equivalent bidsbqi
for the TO it obtains from a VBGGq, and the virtual bid from
Gq, which is

Bq =
∑

i∈Gq

bqi =
∑

i∈Gq

∑

m∈M

∑

j∈T m
i

cmij (Iq) · pi. (4)

Note that as explained above, an auction cannot be economi-
cally robust and system-efficient at the same time, and in this
study we aim to design an economic-robust auction. Thus, the
objective of TO allocation is to find out one winning MIS,
which corresponds to a winning VBG, that maximizes the
virtual bid Bq in each iteration in a monotonic manner. In
particular, we will find the VBG with the highest virtual bid in
the first iteration, the one with the second highest virtual bid in
the second iteration, and so on and so forth until the iteration
ends. Such VBGs (MISs) are considered as winning VBGs
(MISs) denoted byGW (IW ). We will show in SectionV-A that
a monotonic TO allocation procedure is critical in achieving
the IC and IR properties.

Before formulating the optimization problem, we first list
several constraints as follows.

Notice that in the procedure of TO allocation, we do not
assume that we know all the MISs, finding which is in fact an
NP-complete problem. We denote

smij =

{

1, if i can transmit toj on bandm,
0, otherwise.

Since an SU is not able to transmit to or receive from multiple
SUs on the same frequency band, we have

∑

j∈T m
i

smij ≤ 1, and
∑

{i|j∈T m
i

}

smij ≤ 1. (5)

Besides, an SU cannot use the same frequency band for trans-
mission and reception, due to “self-interference” at physical
layer, i.e.,

∑

{i|j∈T m
i

}

smij +
∑

q∈T m
j

smjq ≤ 1. (6)

Moreover, recall that in this study, we consider each SU is only
equipped with a single radio, which means each SU can only
transmit or receive on one frequency band at a time. Thus, we
can have

∑

m∈M

∑

{i|j∈T m
i

}

smij +
∑

m∈M

∑

q∈T m
j

smjq ≤ 1. (7)

Notice that (5)-(6) will hold whenever (7) holds.
In addition to the above constraints at a certain SU, there

are also constraints due to potential interference among the
SUs. In particular, for a frequency bandm, if SU i uses this
band for transmitting data to a neighboring SUj ∈ T m

i , then
any other SUs that can interfere with SUj’s reception should
not use this band. To model this constraint, we denote byPm

j

the set of SUs that can interfere with SUj’s reception on band
m, i.e.,

Pm
j = {p|d(p, j) ≤ Rp,m

I , p 6= j, T m
p 6= ∅}.

The physical meaning ofT m
p 6= ∅ in the above definition

is that SU p has at least one neighbor to which it may
transmit data and hence cause interference to SUj’s reception.
Therefore, we have

∑

{i|j∈T m
i

}

smij +
∑

q∈T m
p

smpq ≤ 1 (∀p ∈ Pm
j ). (8)

Moreover, recall that we need find thet-th highest virtual
bid in the t-th iteration. Thus, in thet-th (t ≥ 2) iteration,
we need find the VBG giving the highest virtual bid with the
previously foundt − 1 VBGs being excluded. LettingIW,t

andGW,t denote the MIS and the corresponding VBG that we
find in the t-th iteration, respectively, we have

∑

((i,j),m)∈IW,τ

smij < |IW,τ |, 1 ≤ τ ≤ t− 1, (9)

∑

((i,j),m) 6∈IW,τ

smij ≥ 1, 1 ≤ τ ≤ t− 1, (10)

where |IW,τ | is the number of elements contained inIW,τ .
(9) means that all the link-band pairs in any of the previously
found t− 1 MISs cannot be selected at the same time in the
t-th iteration, which excludes the previoust − 1 MISs. (10)
means that the newly found MIS should contain at least one
different link-band pair from any of the previously foundt−1
MISs.

Consequently, according to the above constraints, the TO
allocation (TO-AL) optimization problem finding the VBG
with the t-th highest virtual bid in thet-th iteration can be
formulated as follows:

TO-AL: Maximize
∑

i∈N

∑

j∈Ti

∑

m∈Mi∩Mj

cmij s
m
ij · pi

s.t. Equations(7)− (10)

smij = 0 or 1

wheresmij ’s are the optimization variables,cmij ’s are calculated
according to (3),pi are known constants received from the



SUs. Note that (9) and (10) make sure the newly found IS int-
th iteration is an MIS and it is different from any MIS found in
previoust−1 iterations. Besides, (9) is in fact always satisfied
as long as (10) holds. Sincesmij can only take value of 0 or
1, TO-AL is a Binary Integer Programming (BIP) problem,
which can be solved by applying the traditionalbranch-and-
boundor branch-and-cut[19] approach.

B. Transmission Opportunity Scheduling

In this paper, we assume strict allocation [3] in TO auction,
i.e., a source node pays the auctioneer only if its traffic demand
is fully satisfied. Thus, the auctioneer needs to find an optimal
way to utilize those winning MISs, trying to deliver all source
nodes’ traffic by exploring joint scheduling and routing.

Denote the set of the winning MISs found up to thet-th
iteration byIt

W = ∪t
τ=1IW,τ . Note that|It

W | = t. Letting
fij(l) denote the flow rate of trafficl over link (i, j), wherei ∈
N , l ∈ L, andj ∈ Ti given Ti = ∪m∈MT m

i , the scheduling
of the MISs should satisfy the following:

∑

l∈L

fij(l) ≤
t

∑

q=1

λq

∑

m∈M

cmij (Iq). (11)

We then give routing constraints in the following. Recall
that a source SU may need a number of relay nodes to relay
its data packets toward the intended destination node. Since
routing packets along a single path may not be able to fully
take advantage of the local available channels, in this study, we
employ multi-path routing to deliver packets more effectively
and efficiently.

In particular, if SUi is the source of sessionl, i.e.,i = s(l),
then we have the following constraints:

∑

j 6=s(l),s(l)∈Tj

fjs(l)(l) = 0, (12)

∑

j 6=s(l),j∈Ts(l)

fs(l)j(l) = r(l). (13)

The first constraint means that the incoming data rate of
sessionl at its source node is 0. The second constraint means
that the traffic for sessionl may be delivered through multiple
nodes on multiple paths, and the total data rates on all outgoing
links are equal to the corresponding traffic demandr(l).

If SU i is an intermediate relay node for sessionl, i.e.,
i 6= s(l) and i 6= d(l), then

∑

j 6=s(l),j∈Ti

fij(l) =
∑

p6=d(l),i∈Tp

fpi(l), (14)

which indicates that the total incoming data rates at a relay
node are equal to its total outgoing data rates for the same
session.

Moreover, if SUi is the destination node of sessionl, i.e.,
i = d(l), then we have

∑

j 6=d(l),j∈Td(l)

fd(l)j(l) = 0, (15)

∑

p6=d(l),d(l)∈Tp

fpd(l)(l) = r(l). (16)

The first constraint means the total outgoing data rate for
sessionl at its destinationd(l) is 0, while the second constraint
indicates that the total incoming data rate for sessionl at the
destinationd(l) is equal to the corresponding traffic demand
r(l).

Thus, based on the constraints mentioned above, the TO
scheduling (TO-SC) optimization problem in thet-th iteration
can be formulated as follows:

TO-SC: Minimize
t

∑

q=1

λq

s.t. Equations(11)− (16)

λq ≥ 0 (1 ≤ q ≤ t)

fij(l) ≥ 0 (i ∈ N , j ∈ Ti, l ∈ L)

The formulated optimization problem is a linear programming
(LP) problem, which can be easily solved by using the
simplex method [20]. The optimal result of TO-SC indicates
whether the current winning MISs are enough to support the
traffic demand. Specifically, If the optimal objective function
is no larger than 1, then the traffic can be supported. The
solution also shows how to schedule the MISs and route the
traffics. Then, the auctioneer continues to perform pricingas
introduced next. Otherwise, it means that the current winning
MISs cannot satisfy the traffic demand. Thus, the auctioneer
does not need to perform pricing and another winning MIS is
needed from TO-AL.

C. Pricing

In an iteration, if the minimum scheduling length
∑t

q=1 λq

is no larger than 1, given the winning MISsIW and their
schedules, the auctioneer can then determine the clearing price
for each SU. The pricing procedure consists of two steps:
determining the clearing price for each winning VBG, and
determining the clearing price for each winning SU.

Denote the number of iterations the auctioneer takes to
get

∑t
q=1 λq ≤ 1 for the first time byT0. To maintain the

economic properties and take spectrum utilization into con-
sideration, we determine the clearing price for each winning
VBG in the t-th iteration, denoted byCt, as follows:

Ct = max

{

Bt ·
t

∑

q=1

λq, Bt+1

}

, for t ≥ T0,

whereBt is the virtual bid from the VBG found in thet-th
iteration, i.e., the lowest bid among all the winning VBGs’
bids, andBt+1 is the virtual bid from the VBG found in the
(t + 1)-th iteration, i.e., the highest bid among all the losing
VBGs’ bids. Notice that

∑t
q=1 λq indicates the spectrum

utilization. When it is less than 1, it means that the auctioneer
can launch another auction to rent the unutilized spectrum,
and hence it is reasonable to consider it in the clearing price.

With each winning VBG’s clearing price defined as above,
the price a winning SUi needs to pay, denoted byCt,i, is
given as follows:

Ct,i =

t
∑

q=1

(

bqi
Bq

· Ct

)

, for t ≥ T0.



Note that b
q

i

Bq
·Ct is the price SUi needs to pay in VBGGW,q,

and henceCt,i is the total clearing price for SUi.
Thus, a winning SUi’s clearing price, denoted byct,i, is

ct,i =
Ct,i

∑t
q=1

∑

m∈M

∑

j∈T m
i

cmij (IW,q)
, for t ≥ T0.

D. Iteration Termination Condition

As mentioned before, the auctioneer performs the above
three procedures sequentially and iteratively. Here, we discuss
when the auctioneer stops and finishes the auction process.

Notice that the auctioneer’s revenue obtained in thet-th
iteration, denoted byR(t), is R(t) = Ct · t. According to
Moon and Moser’s result [21], any graph withn vertices has
at most3

n
3 MISs. Thus, the number of iterations does not need

to exceed3
|V |
3 , which we denote byTa i.e., t ≤ Ta. Recall

that we denote the number of iterations the auctioneer takes
to get

∑t
q=1 λq ≤ 1 for the first time byT0. We also define a

control parameterTb to be the maximum number of iterations
the auctioneer runs beyondT0 to calculate for its maximum
revenue under the proposed auction scheme. Therefore, we
havet ≤ T0 + Tb, and hencet ≤ min{T0 + Tb, Ta}. We will
show in our simulations that we usually only need a small
number of iterations in practice. Moreover, in the case that
the auctioneer finds that the SUs’ traffic demands cannot be
supported, the auctioneer will drop one of them each time until
the remaining traffic demands can be satisfied.

After the iteration ends, the auctioneer finds the optimal
iteration t∗ that gives the maximum revenueR(t) among all
the t− T0 +1 (from T0 to t) outcomes. Note thatR(t) is not
equal to the maximum revenue the auctioneer can possibly get
undersystem-efficientauction scheme as we explained before.
Then, SUi’s clearing price will bect∗,i.

V. PROOF OFECONOMIC PROPERTIES

In this section, we first prove that our proposed auction
scheme TOA is IC and IR for VBGs, and then show that
those two economic properties also hold for individual SUs.

A. Proof of Economic-robustness for VBGs

According to Myerson’s characterization of IC and IR sus-
tained auction [22], if the item in the auction is monotonically
allocated and the winners are charged with critical value, then
the auction satisfies the IC and IR properties.

Definition 1: Monotonic Allocation: When others’ bids,
i.e.,B−q are fixed, if one bidder wins by biddingBq, then it
also wins by biddingB′

q > Bq.
Definition 2: Critical Value: Critical value is such a value

that if bidders bid higher than it, then they win, and if bidders
bid lower than it, then they lose.

Lemma1: The auction items, i.e., TOs, are monotonically
allocated in our auction scheme.

Proof: Since the TO allocation procedure determines a
winning VBG each time by finding the one with the highest
bid, the lemma directly follows.

Lemma2: The clearing priceCt for each winning VBG
is a critical value.

Proof: Recall thatBt is the virtual bid from the VBG
found in the t-th iteration, i.e., thet-th winning VBG, and
the clearing price isCt = max{Bt ·

∑t
q=1 λq, Bt+1}. First,

if Bt ·
∑t

q=1 λq ≤ Bt+1, thenCt is equal toBt+1, which
is obviously a critical value since bidders with higher bids
than Bt+1 win and those with lower bids lose. Second, if
Bt ·

∑t
q=1 λq > Bt+1, then Ct is equal toBt ·

∑t
q=1 λq,

which is also a critical value. Thus, the clearing price is always
a critical value.

Thus, from Lemma 1 and Lemma 2, we have the following
theorem.

Theorem1: The proposed auction scheme TOA is IC and
IR, and hence economically robust for VBGs.

B. Proof of Economic-robustness for Individual SUs

Although in the previous section, we have shown that our
proposed auction scheme TOA preserves IC and IR properties
and hence is economically robust for VBGs, we need further
prove that it also has these properties for individual SUs.

The following lemma demonstrates the monotonic alloca-
tion for SUs.

Lemma3: When the other SUs’ bids, i.e.,p−i are fixed, if
SU i wins by biddingpi, then it also wins by biddingp′i > pi.

Proof: Consider an arbitrary iterationt. If SU i is a
winner up to this iteration with bidpi, it means thati is
in at least one of thet winning VBGs. Denote the winning
VBG that contains SUi and wins in theq-th iteration byGq

(1 ≤ q ≤ t). Then, its virtual bid is

Bq =
∑

j∈Gq

bqj =
∑

j∈(Gq\i)

bqj + bqi

wherebqi = pi ·
∑

m∈M

∑

j∈T m
i

cmij (IW,q). When SUi bids
p′i > pi, the VBGGq ’s new virtual bid, denoted byB′

q, is

B′
q =

∑

j∈(Gq\i)

bqj + p′i ·
∑

m∈M

∑

j∈T m
i

cmij (IW,q) > Bq.

Denote the set of the winning VBGs found up to theq-th
iteration byGq

W , i.e.,Gq
W = ∪q

τ=1GW,τ . For any VBGGs that
does not contain SUi and loses in allq iterations wheni
bids with pi, i.e., i 6∈ Gs and Gs ∈ G \ Gq

W , we denote its
virtual bid when SUi bids withpi and withp′i by Bs andB′

s,
respectively. Since the other SUs’ bids remain the same, we
have

B′
s = Bs ≤ Bq < B′

q.

Therefore, the VBGs which do not contain SUi and lose in all
q iterations wheni bids withpi will still lose wheni bids with
p′i. Consequently, wheni bids with p′i, since the virtual bids
of the VBGs containing SUi become larger, the number of
VBGs containing SUi in theq wining VBGs in allq iterations
gets no smaller than that wheni bids withpi. Thus, SUi still
wins.

Using the above lemma, we are able to prove the IC property
for individual SUs as follows.

Theorem2: The proposed auction scheme TOA is IC for
SUs.



Proof: Recall that to prove the IC property, we need to
show that for any SUi with any pi 6= vi while the others’
bids are fixed, the condition in (2) holds.

Let ui(pi,p−i) andui(vi,p−i) denote SUi’s utility when
SU i bidspi andvi, respectively. We first consider the scenario
wherepi > vi.

• Case 1: SU i loses with bothvi and pi. In this case,
ui(pi,p−i) = ui(vi,p−i) = 0 according to our definition
in (1). Thus, (2) holds.

• Case 2: SU i loses withvi but wins withpi. In this case,
obviously we haveui(vi,p−i) = 0. Since SUi wins with
pi, in an arbitraryt-th iteration (t ≥ T0), we can obtain

ui(pi,p−i)

= (vi − ci)

t
∑

q=1

∑

m∈M

∑

j∈T m
i

cmij (IW,q)

= vi

t
∑

q=1

∑

m∈M

∑

j∈T m
i

cmij (IW,q)−
t

∑

q=1

(

bqi
Bq

· Ct

)

=

t
∑

q=1

(

vqi −
bqi

bq−i + bqi
Ct

)

,

where bq−i =
∑

j∈Gq,j 6=i b
q
j . Besides, since SUi is a

winning SU, there must be at least one out of thet
winning VBGs that containsi. Denote the set of the
indexes of such VBGs byH . Then, we getvqi = bqi = 0
for q 6∈ H , and hence

ui(pi,p−i) =
∑

q∈H

(

vqi −
bqi

bq−i + bqi
Ct

)

.

In addition, sincevi < pi, we can have that for any
q ∈ H , vqi < bqi and thus

vqi −
bqi

bq−i + bqi
Ct < vqi −

vqi
bq−i + vqi

Ct. (17)

Furthermore, for any winning VBG that contains SUi,
sayGq (q ∈ H), its virtual bid satisfiesBq = bq−i + bqi ≥
Ct. Due to the fact SUi loses by biddingvi, thet winning
VBGs, denoted byGk (1 ≤ k ≤ t) with virtual bid Bk,
do not contain SUi when SUi bids vi. Thus, we have
bq−i + vqi ≤ Bt. Since at least one VBG containing SUi
becomes a winner when SUi bids pi, Gt must lose, and
henceBt ≤ Ct. Thus, we haveCt ≥ bq−i+vqi for q ∈ H .
As a result, we finally get

ui(pi,p−i) <
∑

q∈H

(vqi −
vqi

bq−i + vqi
Ct) < 0,

which leads toui(pi,p−i) ≤ ui(vi,p−i) as well.
• Case 3: SU i wins with vi and loses withpi. Since

pi > vi, according to the monotonicity property we have
proved in Lemma 3, this will not happen.

• Case 4: SU i wins with bothvi and pi. In an arbitrary
t-th iteration (t ≥ T0), we denote the set of the indexes
of the winning VBGs containing SUi when SUi bids
with pi and that when Ui bids with vi by H andH ′,

respectively. We also denote the clearing prices wheni
bids with pi and vi by Ct andC′

t, respectively. Notice
that 1) if the set of winning VBGs when SUi bids with
pi and that when SUi bids with vi, denoted byGq

W (pi)
andGq

W (vi), respectively, are the same, we haveCt ≥ C′
t

according to (17) since the VBGs’ virtual bids are larger
when SUi bids with pi andλq ’s remain the same; 2) if
Gq
W (pi) andGq

W (vi) are different, it means at least one
of the winning VBGs when SUi bids withvi loses when
SU i bids withpi. Since this VBG’s virtual bid when SU
i bids with pi, denoted byBx, is no smaller than that
when when SUi bids with vi, denoted byB′

x, we have
Ct ≥ Bx ≥ B′

x ≥ C′
t. Consequently, we always have

Ct ≥ C′
t. Besides, similar to that in Case 2, we get

ui(pi,p−i) =
∑

q∈H

(

vqi −
bqi

bq−i + bqi
Ct

)

ui(vi,p−i) =
∑

q∈H′

(

vqi −
vqi

bq−i + vqi
C′

t

)

When SU i bids with pi, denote its utility attributed
to the common VBGs betweenGq

W (pi) andGq
W (vi) by

u1
i (pi,p−i) and the utility attributed to the other VBGs by

u2
i (pi,p−i). Similarly, when SUi bids withvi, denote its

utility attributed to the common VBGs betweenGq
W (pi)

andGq
W (vi) byu1

i (vi,p−i) and the utility attributed to the
other VBGs byu2

i (vi,p−i). Then, we have the following
results.
First, for those common VBGs betweenGq

W (pi) and
Gq
W (vi), we have

u1
i (pi,p−i)− u1

i (vi,p−i)

≤
∑

q∈(H∩H′)

(

vqi −
bqi

bq−i + bqi
Ct

)

−
∑

q∈(H∩H′)

(

vqi −
vqi

bq−i + vqi
Ct

)

which is less than 0 according to (17).
Second, for any VBG inGq

W (pi) but not inGq
W (vi), we

have

vqi −
bqi

bq−i + bqi
Ct < vqi −

vqi
bq−i + vqi

Ct.

Since this VBG loses when SUi bids with vi, we have
Ct ≥ C′

t ≥ bq−i + vqi . Thus, we get

u2
i (pi,p−i) =

∑

q∈H\(H∩H′)

(

vqi −
bqi

bq−i + bqi
Ct

)

≤ 0.

Third, for any VBG in Gq
W (vi) but not in Gq

W (pi), we
havevqi −

vq

i

bq−i
+vq

i

C′
t ≥ 0 since this VBG wins when SU

i bids with vi andC′
t ≤ bq−i + vqi . Thus, we obtain

u2
i (vi,p−i) =

∑

q∈H′\(H∩H′)

(

vqi −
bqi

bq−i + bqi
Ct

)

≥ 0.



As a result, we can get

ui(pi,p−i)− ui(vi,p−i)

=u1
i (pi,p−i)− u1

i (vi,p−i) + u2
i (pi,p−i)− u2

i (vi,p−i)

≤0.

The proof is similar whenpi < vi, which is omitted due to
space limit.

In general,ui(pi,p−i) ≤ ui(vi,p−i) always holds, and
hence the theorem directly follows.

Theorem3: The proposed auction scheme TOA is IR for
SUs.

Proof: In an arbitraryt-th iteration (t ≥ T0), since TOA
is IR for VBGs, we haveCt ≤ Bq for 1 ≤ q ≤ t, and hence

ci =

∑t
q=1

(

bq
i

Bq
· Ct

)

∑t
q=1

∑

m∈M

∑

j∈T m
i

cmij (IW,q)

≤

∑t
q=1 b

q
i

∑t
q=1

∑

m∈M

∑

j∈T m
i

cmij (IW,q)

=

∑t
q=1 pi

∑

m∈M

∑

j∈T m
i

cmij (IW,q)
∑t

q=1

∑

m∈M

∑

j∈T m
i

cmij (IW,q)
= pi.

Therefore, TOA is IR for SUs.
From Theorem 2 and Theorem 3, we can have the following

theorem.
Theorem4: The proposed auction scheme TOA is

economic-robust for SUs.

VI. SIMULATION RESULTS

In this section, we conduct simulations to evaluate the per-
formance of our proposed auction scheme TOA. Simulations
are carried out in CPLEX 12.4 on a computer with a 2.27
GHz CPU and 24 GB RAM. We randomly deploy SUs in a
square network of area1000m× 1000m. There are totally 5
multi-hop sessions in the network, each of which has traffic
demand of 1Mbps. We assume that each bidder’s true valuation
of (and hence its bid for) unit instantaneous transmission rate
is uniformly distributed over[10−6, 10−5]. In addition, assume
the PU has 3 idle spectrum bands to lease to the SUs, with their
bandwidths being 1.0MHz, 1.5MHz and 2.0MHz, respectively.
Some other important simulation parameters are listed as
follows. The path loss exponent is 4 andC = 62.5. The noise
power spectral density isη = 3.34× 10−18W/Hz at all nodes.
The transmission power spectral density of nodes is8.1×109η,
and the reception threshold and interference threshold areboth
8.1η on each spectrum band. Thus, the transmission range
and the interference range on each frequency band are both
equal to 500m. Since we have proved that our auction scheme
is economic-robust in the previous section, we demonstrate
the auction efficiencyand the auctioneer’s revenue in what
follows. Note that auction efficiency is defined as the ratio of
the number of finally successfully delivered traffic flows to the
total number of traffic flows demanded by the SUs.

We first compare the auction efficiency of the proposed
TOA scheme with those of two other auction schemes: one for
single-hop data transmission [10], and the other for multi-hop
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Fig. 1. Auction efficiency comparison with 1-hop auction scheme and
greedy multi-hop auction scheme. (a) Single-hop data transmission scenario.
(b) Multi-hop data transmission scenario.

data transmission [12] which greedily assigns spectrum bands
to links. We call these two schems 1-hop auction and greedy
multi-hop auction, respectively, in our simulations. To make
fair comparisons, we compare TOA with these two schemes
in single-hop and multi-hop scenarios, respectively.

In the single-hop scenario, each source SU can reach its
intended destination SU in one hop, and hence the data traffic
can be delivered in one-hop as well. Fig. 1(a) gives the results
when the number of SUs ranges from 10 to 30 and the number
of available spectrumsM is equal to 1 and 3. We can find that
TOA can achieve much higher auction efficiency than 1-hop
auction. Particularly, in the case that there is only one available
spectrum band, TOA can support two and three traffic flows
when the number of SUs is 10 and 15, respectively, while 1-
hop auction cannot support any of the traffic flows. When there
are more SUs in the network, TOA can support four traffic
flows while 1-hop auction can only support one of them. In
the case that there are three available spectrum bands, TOA
can support four flows when there are 10 SUs and all the five
flows when there are more SUs, while 1-hop auction can only
support one flow, two flows, and three flows, when there are
10, 15 and 20, and more SUs, respectively. As we mentioned
before, this is because in 1-hop auction, it is not clear whom
a winning SU communicates with and there can be a lot of
collisions in the network.

In the multi-hop scenario, each source node needs to deliver
data to its destination via multiple hops. The auction efficiency
is shown in Fig. 1(b) when the number of SUs ranges from 10
to 30 and the number of available spectrumsM is equal to 1
and 3. In particular, in the case that there is only one available
spectrum band, TOA can support three traffic flows when the



number of SUs is 10, and all the five traffic flows when there
are more SUs in the network. On the other hand, greedy multi-
hop auction cannot support any traffic flows when there are 10
SUs, and only two flows when there are more SUs. Besides,
in the case that there are three available spectrum bands, TOA
can support four flows when there are 10 SUs and five flows
when there are more SUs, while greedy multi-hop auction can
only support one flow, two flows, and three flows, when there
are 10, 15, and more SUs, respectively. This is because that
we consider transmission opportunities in auctions as wellas
spectrum scheduling in both frequency and time domains.
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Fig. 2. Computation performance under different number of spectrum band.

We then illustrate the revenues TOA generates for the
auctioneer. Note that in TOA, SUs bid for TOs based on
unit instantaneous transmission rate, while the other auction
schemes bid for spectrum bands based on bandwidth. Thus,
SUs’ valuations and bids have very different meanings from
those in previous schemes, and we cannot compare with their
revenues here. In this case, we consider the scenarios where
there are 20 SUs and the number of available spectrum bands
M is equal to 2 or 3. The results are shown in Fig. 2. We can
see that the auctioneer’s revenue first grows and then declines
as the iteration number increases. We can also find that the
number of iterations does not need to be very large. For exam-
ple, whenM = 2, T0 is around 55, and the maximum revenue
is achieved when the iteration number is approximately 310.
When M = 4, the maximum revenue is achieved when the
iteration number is about 390. Moreover, the auctioneer’s
revenue is higher when there are more spectrum bands, which
fits our intuition since it sells more resources. On the other
hand, the revenue whenM = 3 does not exceed much than
that whenM = 2 since the auctioneer does not need to fully
utilize all the spectrum resources to support the traffic andcan
save some for other applications.

VII. C ONCLUSIONS

In this paper, we have proposed a novel spectrum auction
scheme, called transmission opportunity auction (TOA), based
on TOs. The TOA scheme is mainly composed of three
procedures: TO allocation, TO scheduling, and pricing. In TO
allocation, in each iteration the auctioneer finds out the VBG
that has the highest virtual bid. In TO scheduling, the auction-
eer checks if the winning VBGs found so far can support the
traffic demand in the network by solving a minimum length
scheduling problem. In pricing, the auctioneer determinesthe

clearing price for each winning VBG and SU, and computes
its own revenue. The auctioneer finally chooses the winning
VBGs which can generate the highest revenue among the
results it obtains. We have proved that TOA is IC, IR, and
BB, and hence economic-robust. We have also carried out
extensive simulations which show that TOA leads to high
spectrum utilization and efficiently generates high profitsfor
the auctioneer.
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