
Efficient Secure Outsourcing of Large-Scale Linear
Systems of Equations

Sergio Salinas, Changqing Luo, Xuhui Chen, and Pan Li

Department of Electrical and Computer Engineering

Mississippi State University, Mississippi State, MS 39762

Email: {sas573, cl1349, xc126, li@ece.}msstate.edu

Abstract—Solving large-scale linear systems of equations
(LSEs) is one of the most common and fundamental problems in
big data. But such problems are often too expensive to solve for
resource-limited users. Cloud computing has been proposed as a
timely, efficient, and cost-effective way of solving such computing
tasks. Nevertheless, one critical concern in cloud computing is
data privacy. To be more prominent, in many cases, clients’s LSEs
contain private data that should remain hidden from the cloud
for ethical, legal, or security reasons. Many previous works on
secure outsourcing of LSEs have high computational complexity.
More importantly, they share a common serious problem, i.e., a
huge number of external memory I/O operations. This problem
has been largely neglected in the past, but in fact is of particular
importance and may eventually render those outsourcing schemes
impractical. In this paper, we develop an efficient and practical
secure outsourcing algorithm for solving large-scale LSEs, which
has both low computational complexity and low memory I/O
complexity and can protect clients’ privacy well. We implement
our algorithm on a real-world cloud server and a laptop. We
find that the proposed algorithm offers significant time savings
for the client (up to 65%) compared to previous algorithms.

I. INTRODUCTION

In recent years, many large-scale systems and applications

have emerged which deal with huge volumes of data. For ex-

ample, social networks need to monitor and record interactions

among millions or billions of users [1] [2]; scientists need to

sequence the genome of complex organisms [3]; and power

system operators collect enormous amounts of data from the

electric grid for real-time monitoring and offline analysis [4].

Due to advances in computer memory, large-scale data sets

can be stored in a cost-effective manner. However, analyzing

them requires extensive computing resources which are usually

very expensive capital investments. Therefore, both individuals

and organizations face a formidable challenge in trying to

analyze large-scale data sets in a timely and cost-effective way.

This challenge has attracted significant attention from industry,

academia and governments, who have identified it as a new

technology field, called Big Data [5], [6].

Solving large-scale linear systems of equations (LSEs)

of the form Ax = b is one of the most common and

fundamental problems in big data. But such problems are

often too expensive to solve for resource-limited users. Some

This work was partially supported by the U.S. National Science Foundation
under grants CNS-1343220, CNS-1149786, ECCS-1128768, and the Pacific
Northwest National Laboratory under U.S. Department of Energy Contract
DE-AC05-76RL01830.

researchers and companies suggest cloud computing as a

new way of solving such computing tasks [7]–[11]. In cloud

computing, clients outsource their computing tasks to the

cloud, which contains a large amount of computing resources

and offers them on a pay-per-use basis [12]. In this computing

paradigm, clients share the cloud resources with each other,

and avoid purchasing, installing, and maintaining sophisticated

and expensive computing hardware and software.

Nevertheless, one critical concern in cloud computing is

data privacy. To be more prominent, in many cases, clients’s

LSEs contain private data that should remain hidden from

the cloud for ethical, legal, or security reasons. For example,

a person’s genome could be disclosed by a computing task

from a health-care provider [5]; a company’s data set may

reveal proprietary processes, which are an attractive target

for corporate espionage; or data from power system operators

contain information that can be exploited to attack the electric

grid [13]. Thus, in order for people to really adopt cloud

computing, we have to design tools and technologies that

allow clients to outsource the computing of their LSEs to the

cloud while preserving the privacy of their data. The fact that

clients lack computing and storage resources also limits the

complexity of operations that they can perform to hide their

data from the cloud, which makes secure outsourcing an even

more challenging problem.

Some previous works on securely outsourcing computing

tasks to the cloud could be used to solve LSEs. However, they

suffer from high computing requirements. In [14], Gennaro et

al. utilize fully homomorphic encryption (FHE) to securely

outsource computations to the cloud. Although the scheme is

very attractive and offers theoretical privacy guarantees, FHE

itself is a computationally intensive operation, and large-scale

computations based on FHE ciphertexts are very expensive,

even for the cloud. Wang et al. [15] [16] propose methods to

privately outsource a linear programming problem. A client

may employ these methods to find the solution to an LSE by

requesting the cloud to solve a special linear program. Unfor-

tunately, to protect data privacy, the client needs to perform

a matrix-matrix multiplication that is prohibitively expensive

because this operation has a computational complexity of

O(nρ) for 2 < ρ ≤ 3 (for n× n matrices).

Recently a few secure outsourcing algorithms have been

developed specifically for solving LSEs. Lei et al. [17] and

Atallah et al. [18] design secure matrix inversion algorithms

that use matrix permutations to preserve data privacy. To find

the solution to an LSE, a client performs operations with

O(n2) complexity. Wang et al. [19] develop an iterative algo-

rithm specifically to solve LSEs, where a client transforms and

encrypts the coefficient matrix using homomorphic encryp-

tion, and the cloud carries out computations on ciphertexts.

Specifically, the client needs to perform two matrix-vector

multiplications, which require O(n2) floating-point (flops)

operations, and O(n2) homomorphic encryptions. Note that

performing homomorphic encryptions has high computational

complexity (O(log2 e) flops per encrypted value, were e is

the key size). Although it is proposed that the client could

outsource this computation to a trusted third-party, it may not

always exist. The use of homomorphic encryption also forces

the cloud to operate on ciphertexts, which then has to use

specialized linear algebra software and performs operations

with higher computational complexity. Besides, the proposed

algorithm only works for LSEs whose coefficient matrices are

diagonally dominant, and the privacy will be compromised if

the number of iterations approaches or exceeds n. Later on,

Chen et al. [20] also propose similar solutions to outsourcing

linear programs and LSEs while preserving users’ privacy. We

notice that most such works’ computational complexities are

still high.

More importantly, previous works [17]–[20] share a com-

mon serious problem, i.e., a huge number of external memory

I/O operations. This problem has been largely neglected in the

previous secure outsourcing algorithm design. But we stress

that the number of times an algorithm accesses a matrix is of

particular importance for outsourcing a large-scale LSE and

can eventually render the algorithm impractical. The reason is

as follows. Most often a client lacks enough RAM memory

to store a large-scale matrix completely at once. So, instead

of working on RAM memory directly, as is the case with

smaller matrices, the client can only load a small section

of the large-scale matrix at a time and write the results

to external memory when it is done. However, reading and

writing operations from and into external memory have a very

high latency compared to the same operations in RAM. For

example, our experiments show that reading a matrix once

with dimension 30, 000× 30, 000 and size 10GB on a laptop

that has 4GB RAM and a hard disk at 5400RPM would

take about 15 minutes. Therefore, any practical algorithm for

large-scale LSEs should only incur as small the number of

memory I/O operations for the client as possible. To better

capture the special external memory I/O requirement of large-

scale LSEs, we propose a new definition of “external memory
I/O complexity”, which is the number of values that are

read/written from/into external memory. In this paper, we call

it “memory I/O complexity” for brevity. Previous works have

very high memory I/O complexity. For example, a client needs

to access the elements of a matrix many times in [17]–[19],

which may take an unacceptably long time due to the latency

of the huge number of I/O operations in practice.

Aiming to reduce both computational and memory I/O com-

plexities, in this paper, we develop an efficient and practical

secure outsourcing algorithm for solving large-scale LSEs.

Specifically, to protect its data privacy, a client generates a

random matrix to transform the original coefficient matrix A
into matrix Â via a matrix addition. We prove that matrix

Â is computationally indistinguishable from a random matrix.

Then, based on the conjugate gradient method, the client finds

the solution vector x iteratively with the help of the cloud.

Since the client delegates expensive matrix-vector operations

to the cloud, it has computational complexity of O(n2).
Besides, it has very low memory I/O complexity of 4n2+4n.

The algorithm preserves the privacy of the client, i.e, hides

A, x, and b, by letting the cloud operate on the transformed

matrix Â and some intermediate values, rather than on A, x,

or b. Moreover, since matrix Â is the result of a linear algebra

operation, the cloud can use traditional linear algebra software,

and avoid the costly exponentiations required for ciphertext-

based operations as in [19].

We summarize our main contributions as follows.

• We develop an efficient and practical algorithm to se-

curely outsource the computation of large-scale LSEs

• The proposed algorithm requires operations with low

computational and storage complexities from the client.

In particular, the computational complexity is O(n2)
and the memory I/O complexity is 4n2 + 4n read/write

operations. We compare both complexities of our algo-

rithm with those of previous algorithms and find that our

algorithm is much more efficient.

• We show that the cloud is unable to obtain any informa-

tion about the client’s LSE. Different from [19] where

privacy can only be protected if the algorithm converges

in fewer than n iterations, the privacy in our algorithm can

be protected no matter how many iterations are needed.

• We implement our algorithm on a real-world cloud server

and a laptop. We find that the proposed algorithm offers

significant time savings for the client (up to 65%) com-

pared to previous algorithms.

The rest of the paper is organized as follows. In Section

II we introduce the considered system architecture and threat

model. Section III describes the proposed privacy-preserving

matrix transformation. Section IV presents in detail the pro-

posed algorithm for secure outsourcing of LSEs, while Section

V analyzes the computational complexity, storage complexity,

and privacy of the proposed algorithm. We present our ex-

perimental results in Section VI, and conclude the paper in

Section VII.

II. PROBLEM FORMULATION

In this section, we present the system architecture consid-

ered in this paper, and introduce the threat model.

A. System Architecture

We consider an asymmetric two-party computing architec-

ture as shown in Fig. 1, where a cloud client (CC) is resource-

limited while a remote cloud server (CS) has abundant comput-

ing resources. The CC intends to solve a large-scale computing

task, but cannot complete it on its own. So the CC offloads the

Fig. 1. A Secure Architecture for Outsourcing LSEs

most expensive computations to the CS and collaborates with

it to find the solution to the large-scale LSE. In this work, we

concentrate on the computing task of finding the solution to a

large-scale LSE:

Ax = b (1)

where A ∈ Rm×n (m ≥ n) is a full rank coefficient matrix,

x ∈ R
n×1 is the solution vector, and b ∈ R

m×1 is the constant

vector. We assume that A, x, and b contain, or could reveal

private information of the CC.

B. Threat Model

We assume a malicious threat model for the CS. That is,

the CS tries to extract information from the CC’s data and

from the results of its own computations, and may attempt

to deviate from the proposed protocols and return erroneous

results. Besides, we assume that the CS knows the form of the

LSE as described in (1) and our proposed secure outsourcing

algorithm as well.

To enable the CC to securely delegate computing tasks to

the CS, the data that the CC shares with the CS should appear

random. This notion of privacy is known as computational

indistinguishability [21], and is defined as follows.

Definition 1. Computational Indistinguishability: Two prob-

ability ensembles X = {Xs}s∈N and Y = {Ys}s∈N, are

computationally indistinguishable if for every probabilistic

polynomial time distinguisher D there exists a negligible

function μ(·) such that∣∣Pr[D(Xs) = 1]− Pr[D(Ys) = 1]
∣∣ < μ (2)

where the notation D(Xs) (or D(Ys)) means that x (or y) is

chosen according to distribution Xs (or Ys) and then D(x) (or

D(y)) is run.

Moreover, this definition can be extended to the case where

a distinguisher D has access to multiple samples of the vectors

X and Y , i.e., when comparing two matrices.

Definition 2. Let R ∈ R
m×n be a random matrix with entries

in its jth column sampled from a uniform distribution with

interval [−Rj , Rj] ∀j ∈ [1, n]. Matrices R and Q ∈ R
m×n

are computationally indistinguishable if for any probabilistic

polynomial time distinguisher D(·) there exists a negligible

function μ(·) such that

|P [D(ri,j) = 1]− Pr[D(qi,j) = 1]| ≤ μ (3)

where i ∈ [1,m], j ∈ [1, n], ri,j is the element in the ith row

and jth column of R, and qi,j is the element in the ith row

and jth column of Q. Distinguisher D(·) outputs 1 when it

identifies the input as a non-uniform distribution in the range

[−Rj , Rj], and zero otherwise.

III. A PRIVACY-PRESERVING MATRIX TRANSFORMATION

Before delving into details about our proposed algorithm

for outsourcing large-scale LSEs, we first present a privacy-

preserving matrix transformation scheme.

To delegate a computing task to the CS, the CC first needs

to perform some computations on its data. These computations

should hide the data from the CS, require light computational

effort from the CC, and at the same time allow the CS to

return a meaningful result. To this end, we design a light-

weight privacy-preserving matrix transformation based on

matrix addition that offers computational indistinguishability,

that is, a probabilistic polynomial-time algorithm is unable to

differentiate between the transformed matrix and a random

matrix with non-negligible probability.

In particular, the CC hides its private information in the

coefficient matrix A by applying a matrix addition as follows:

Â = A+ Z (4)

where Z ∈ R
m×n is a random matrix, and âi,j = ai,j + zi,j

∀ i ∈ [1,m], j ∈ [1, n] where ai,j is the element in the ith row

and jth column of A. We assume that the values of matrix

A are within the range [−K,K], where K = 2l (l > 0) is a

positive constant.

To reduce the CC’s computational complexity, the random

matrix Z is formed by a vector outer-product, i.e.,

Z = uv� (5)

where u ∈ R
m×1 is a vector of uniformly distributed random

variables with probability density functions as follows:

fU (ui) =

{
1
2c −c < ui < c
0 otherwise

,

where c = 2p (p > 0) is a positive constant, and i ∈ [1,m].
Vector v ∈ R

n×1 is a vector of arbitrary positive constants

ranging from 2l and 2l+q (q > 0).

Note that element zi,j = uivj (∀i ∈ [1,m], j ∈ [1, n])
of matrix Z is the product of a random variable and a

positive constant. Thus, zi,j is also a random variable with

its probability density function defined as [22]:

fZ(zi,j) =
{ 1

2Lj
−Lj < zi,j < Lj

0 otherwise

where Lj = cvj (∀j ∈ [1, n]) and hence is between 2p+l

and 2p+l+q. We can now arrive at a theorem about the com-

putational indistinsguishability between Â and a matrix with

columns filled with values taken from uniform distributions.

Theorem 1. Let R be a random matrix with entries in its

jth column sampled from a uniform distribution with interval

[−Lj , Lj] (∀j ∈ [1, n]). Matrices R and Â are computation-

ally indistinguishable.

Proof: According to Definition 2, we need to show that

ri,j and âi,j (∀i ∈ [1,m], j ∈ [1, n]) are computationally

indistinguishable for matrices R and Â to be computationally

indistinguishable. In particular, we show that any probabilistic

polynomial time distinguisher D cannot distinguish âi,j from

ri,j for any ∀i ∈ [1,m], j ∈ [1, n] except with non-negligible

success probability.

Recall that values from R and A are in the intervals

[−Lj , Lj] and [−K,K], respectively. Thus, we have âi,j ∈
[−K − Lj ,K + Lj], and hence ri,j , âi,j ∈ [−2κ, 2κ] where

κ = p+ l+ q+1. The best strategy for distinguisher D when

presented with a sample x = âi,j is to return b ← {0, 1} with

equal probability if −Lj ≤ x ≤ Lj , and 1 if x < −Lj or

x > Lj . Therefore, when x = âi,j , we have that the success

probability of the distinguisher is given by

Pr[D(âi,j) = 1]

=
1

2
Pr[−Lj ≤ âi,j ≤ Lj]

+Pr[âi,j < −Lj] + Pr[âi,j > Lj]

=
1

2
(1− Pr[âi,j < −Lj]− Pr[âi,j > Lj])

+Pr[âi,j < −Lj] + Pr[âi,j > Lj]

where

Pr[âi,j > Lj] = Pr[ai,j + zi,j > Lj]

= Pr[zi,j > Lj − ai,j]

≤ Pr[zi,j > Lj −K]

=
K

2Lj

Similarly, we find that Pr[â < −Lj] ≤ K
2Lj

. Consequently,

we have that the probability of success for distinguisher D,

when x = âi,j , is bounded as follows:

Pr[D(âi,j = 1)] ≤ 1

2
+

K

2Lj

On the other hand, if x = ri,j , we can obtain that

Pr[D(ri,j) = 1] = 1
2 .

According to equation (2), for any ∀i ∈ [1,m], j ∈ [1, n]
we get that

|Pr[D(âi,j) = 1]− Pr[D(ri,j) = 1]| ≤ K

2Lj

Note that K = 2l and Lj ∈ [2p+l, 2p+l+q]. Thus, we have

μ(κ) =
K

2Lj
≤ 2l

2p+l
=

1

2p
=

1

2κ−l−q−1

which is negligible. By union bound, it completes the proof.

IV. SECURE OUTSOURCING OF LARGE-SCALE LSES

In this section, we develop a practical and light-weight

algorithm to securely outsource a large-scale LSE to the SC

based on the conjugate gradient method (CGM).

A. The Conjugate Gradient Method

We notice that solving the LSE in (1) is equivalent to solving

the following unconstrained quadratic program

min f(x) =
1

2
x�A′x− b′x (6)

where A′ is symmetric and positive definite [23]. Therefore,

we use the CMG algorithm that solves the above optimization

problem to solve (1).

Specifically, as any gradient directions (GD) method, the

CGM employs a set of vectors P = {p0,p1, . . .pn} that

are conjugate with respect to A′, that is, at iteration k the

following condition is met:

p�
k A

′pi = 0 for i = 0, . . . , k − 1. (7)

Using the conjugacy property of vectors in P , we can find

the solution in at most n steps by computing a sequence of

solution approximations as follows:

xk+1 = xk + αkpk (8)

where αk is the one-dimensional minimizer of (6) along xk+
αkpk. The minimizer αk can be found by setting (6) to zero

and taking its gradient when x = xk+1

∇f(xk+1) = A′xk+1 − b′ = 0. (9)

By replacing xk+1 with (8) and multiplying by p�
k from the

left, we get

αk =
−r�k pk

p�
k A

′pk
(10)

where rk = A′xk − b′ is called the residual.

Moreover, we can find the residual iteratively based on (8)

as follows:

rk+1 = A′xk+1 − b′

= A′(xk + αkpk)− b′ = rk + αkA
′pk. (11)

Efficiently finding the set of conjugate vectors P is a major

challenge in GD methods. The CGM algorithm offers an effi-

cient way of finding P that has low storage and computational

complexity. In particular, the CGM finds a new conjugate

vector pk+1 at iteration k by a linear combination of the

negative residual, i.e., the steepest descent direction of f(x),
and the current conjugate vector pk, that is,

pk+1 = −rk+1 + βk+1pk (12)

where βk+1 is chosen in such a way that p�
k+1 and pk meet

condition (7). By multiplying p�
k A

′ from the left in (12), we

get

p�
k A

′pk+1 = −p�
k A

′rk+1 + p�
k A

′βk+1pk,

which leads to

βk+1 =
p�
k A

′(pk+1 + rk+1)

p�
k A

′pk
.

Since as mentioned above p�
k and p�

k+1 are conjugate with

respect to A′, we have p�
k A

′pk+1 = 0. Note that p�
k A

′rk+1

is a scalar and A′ is symmetric. Thus, we have

βk+1 =
r�k+1A

′pk

p�
k A

′pk
. (13)

Moreover, since xk minimizes f(x) along pk, it can be

shown that r�k pi = 0 for i = 0, 1, . . . , k − 1 [23]. Using this

fact and equation (12), a more efficient computation for (10)

can be found, namely,

αk =
−r�k (−rk + βkpk−1)

p�
k A

′pk

=
r�k rk

p�
k A

′pk
.

Similarly, using (11), we can find a more efficient formulation

for βk+1. First, we replace A′pk with 1
α (rk+1 − rk) in (13)

to get

βk+1 =
r�k+1(rk+1 − rk)

p�
k (rk+1 − rk)

Then, using the fact that p�
k rk+1 = 0 and r�k+1rk = 0 [23],

we find that

βk+1 = −r�k+1rk+1

p�
k rk

.

By replacing pk with −rk + βkpk−1 above, and applying

p�
k−1rk = 0, we get

βk+1 =
r�k+1rk+1

r�k rk
.

To summarize the above, the CGM algorithm is as follows.

At iteration k = 0, we have

r0 = A′x0 − b′ (14)

p0 = −r0 (15)

k = 0 (16)

and at iteration k > 0 we have the following iterative

equations:

αk =
r�k rk

p�
k A

′pk
(17)

rk+1 = rk + αkA
′pk (18)

xk+1 = xk + αkpk (19)

βk+1 =
r�k+1rk+1

r�k rk
(20)

pk+1 = −rk+1 + βk+1pk (21)

Compared to other methods, e.g., Gaussian eliminations, QR

decomposition, CGM offers a feasible algorithm for extremely

large-scale systems.

B. The Privacy-preserving CGM Algorithm

In what follows, we describe our proposed privacy-

preserving CGM algorithm (PPCGM) that exploits the struc-

ture of the CGM method to securely shift the relatively more

expensive operations, i.e., matrix-vector multiplications, in

each iteration to the CS.

1) LSE Tranformation: As shown in Section IV-A, the

CGM algorithm only works with symmetric and positive

definite matrices. Therefore, the CC can transform the original

LSE (1) to the following equivalent LSE:

A′x = b′ (22)

where A′ = A�A is symmetric and positive definite, and

b′ = A�b.

Since computing A′ requires a matrix-matrix multiplication,

which has complexity of O(nρ), the CC can outsource the

computation to the CS. To be more prominent, the CC gener-

ates a random matrix Z0 = u0v
�
0 as described in Section III

and then sends a masked matrix Â0 to the CS:

Â0 = A+ Z0. (23)

As proved before, Â0 is computationally indistinguishable

from a random matrix and hence does not reveal any in-

formation about A. The CS carries out the following secure

computation:

G = Â�
0 Â0

= A�A+M

where M = Z�
0 A+A�Z0+Z�

0 Z0. Thus, upon receiving G,

the CC can obtain the symmetric positive definite matrix A′

by

A′ = G−M. (24)

To avoid matrix-matrix multiplications in the calculation of

M, the CC can replace Z0 with u0v
�
0 , i.e.,

M = v0(u
�
0 A) + (A�u0)v

�
0 + v0(u

�
0 u0)v

�
0 . (25)

We summarize this LSE transformation scheme in Algo-

rithm 1. Next, the CC and the CS collaboratively carry out

the CGM algorithm to solve A′x = b′. Note that A′ can be

calculated just once for many LSEs that share the same A′

but have different b′’s. For example, power system operators

solve many state estimation problems for system monitoring

and control. These problems have different measurements, i.e.,

b′’s, but the same A′ which depends on network topology and

does not change frequently. Thus, finding A′ once is enough

to solve a large number of LSEs.

2) Initialization: In the initialization step, the CC sets the

initial solution vector x0 to a random vector of Rn×1, and tries

to compute r0 and p0 according to equations (14) and (15).

Since computing A′x0 requires a matrix-vector multiplication,

the CC can outsource this computation to the CS.

Particularly, the CC generates a masked coefficient matrix

Â′ = A′ + Z, where Z = uv� as described in Section III,

and sends it together with x0 to the CS. The CS helps the

Algorithm 1 LSE Transformation

Input: CC ← A,b
1: Generate matrix Z0

2: Construct Â0 using (23) and send it to CS

3: Receive G
4: Calculate A′ using (24)

5: Calculate b′ = A�b
Output: A′,b′

CC compute the term A′x0 in a privacy-preserving manner

by computing the following intermediate value

h0 = Â′x0.

Upon receiving h0, the CC computes the residual vector as

follows

r0 = A′x0 − b′ (26)

= h0 − u(v�x0)− b′. (27)

By computing v�x0 first in equation (26), the CC computes

vector-vector computations only, which have linear complex-

ity. This is possible due to the fact that Z is a rank-one matrix

and can be decomposed into an outer-vector product. If we

had formed Z arbitrarily, the client would not experience any

computational or storage complexity gains.

At the end of the initialization step, the client sets the

conjugate vector p0 = −r0, and transmits it along with r0
to the CS.

3) Main Iteration: Exploring the CGM iteration, i.e., equa-

tions (17)-(21), we notice that equations (17) and (18) need

matrix-vector multiplications involving the coefficient matrix

A′, while the rest of the equations only require vector-

vector multiplications. We exploit these equations to design

an efficient collaborative computation between the CC and

the CS, where the CS helps compute (17) and (18), and the

CC carries out the rest of the equations by itself. To protect

the CC’s privacy, the CS carries out computations with the

transformed matrix Â′, instead of A′. In what follows, we

describe a set of operations that allow the CC to efficiently

find xn, while protecting its data privacy.

To compute αk, the CC and the CS carry out equation (17)

in two steps. First, the CS computes an intermediate vector

tk = p�
k Â

′pk

Second, the CC finds αk using tk as follows

αk =
r�k rk

tk − (p�
k u)(v

�pk)
. (28)

Similarly, the CC exploits the CS’s resources to find rk+1.

The CS first calculates the intermediate vector

fk = Â′pk

which allows the CC to compute rk+1 as follows

rk+1 = rk + αk(fk − uv�pk). (29)

Note that when calculating αk and rk+1 we have also used

the fact that Z is rank-one to provide computational gains to

the CC. That is, the CC carries out the computations of αk

and rk+1 in linear time via vector-vector multiplications.

Equations (19)-(21) only require vector-vector operations,

hence they all can be computed entirely by the CC itself. At

the end of the kth iteration, the CC transmits pk+1 to the CS

for the next iteration k + 1. Iterations terminate according to

the stopping criteria suggested by Golub and Van Loan [24],

i.e.,
√

r�k rk ≤ ν||b′||2, where ν is a tolerance value.

We summarize the PPCGM algorithm for the CC in Algo-

rithm 2. Moreover, we note that since the CS has an economic

incentive to allocate less computational resources to the CC

and return erroneous solutions, the CC should be able to

verify the results from the CS. In particular, at the end of the

algorithm the CC can multiply A′ by the obtained solution

vector x, and compare the product to the constant vector b′.
As in [19], the solution vector x can be deemed correct if

||A′x − b′||2 ≤ ε, where ε is a small value. Since the result

verification is not the main focus of this paper, we refer the

readers to other works for more detailed discussions.

Algorithm 2 A Privacy-Preserving Conjugate Gradient

Method (PPCGM)

Input: CC ← A′, b′

1: Generate u, v, and Z using (5)

2: Calculate Â′ = A′ + Z and transmit it and x0 to the CS

3: Receive h0

4: Calculate r0 using (26) and p0 = −r0, and transmit to

cloud

5: while
√
r�k rk ≤ ν||b′||2 do

6: Receive tk and fk
7: Compute αk using (28)

8: Compute rk+1 using (29)

9: Compute xk+1, βk+1, pk+1 using (19), (20) and (21),

respectively.

10: Transmit pk+1 to cloud

11: end while
Output: xn

V. PERFORMANCE ANALYSIS

In this section we analyze the computational and mem-

ory I/O complexity of the proposed PPCGM algorithm, and

compare them with those of the previous works. We also

present a thorough privacy analysis. Note that previous works

can only work with square coefficient matrices. To perform

fair comparisons, we assume that they employ our proposed

Algorithm 1 to securely transform an arbitrary coefficient

matrix into a square matrix.

A. Computational Complexity

We define the computational complexity of a party as the

number of floating-point (flops) operations (additions, subtrac-

tions, multiplications, and divisions), bitwise operations, and

encryptions that the party needs to perform. We note that an

encryption takes many flops, and a flop takes some bitwise

operations. To determine the overall computational complexity

for the client in PPCGM, we look into Algorithm 1 and

Algorithm 2 in detail.

If the original coefficient matrix is not symmetric and

definite positive, the CC runs Algorithm 1 to construct such

a matrix in equation (22). To this end, the CC computes 4

matrix-matrix additions and subtractions (mn+3n2), 2 matrix-

vector products
(
2n(2m− 1)

)
, 3 outer vector products (3n2),

1 inner vector product (2m − 1), and 1 scalar-vector product

(n), which takes 6n2 + 5mn+ 2m− n− 1 flops.

In line 1 of Algorithm 2, the client generates the random

vector u and the random matrix Z. To get u, the client uses

a pseudo-random number generator like the Mersenne Twister

[25], which takes a constant number of bitwise operations

per random number. To get Z, the client multiplies u times

the vector of constants v� via n2 flops. We assume the

constants in v are pre-chosen by the client. In line 2, the

client constructs the transformed coefficient matrix Â′ through

a matrix addition, which takes n2 flops. Thus, the total

number of operations required to get Â′ is 2n2 flops and

Cn bitwise operations, where C is the number of bitwise

operations needed to generate a random number. In line 4, the

client computes r0 through one vector-vector multiplications

(2n− 1), one vector-scalar multiplication (n), and two vector-

vector subtractions (2n), which takes 5n−1 flops in total. Note

that p0 can be computed by the CS. The total computational

complexity of the initialization phase for the CC is 2n2+5n−1
flops plus Cn bitwise operations.

To find αk in line 7, according to equation (28), the

client performs 4 vector-vector multiplications
(
4(2n − 1)

)
,

a scalar subtraction, and a scalar division, which has a total

of 8n − 2 flops. In line 8, the client performs 1 vector-

vector multiplication (2n− 1), 2 vector-scalar multiplications

(2n), and 2 vector-vector additions (2n) to find rk+1. This

computation has a cost of 6n− 1 flops. Similarly, we observe

xk+1, βk+1, pk+1 need 2n, 4n−1, and 2n flops, respectively.

Totally, the client performs 22kn− 4k flops after k iterations.

Thus, the total computational complexity of the PPCGM

algorithm is O(mn) flops plus O(n) bitwise operations.

In the scheme proposed by [17], an arbitrary coefficient

matrix needs to be transformed into a square invertible matrix

first, which takes 6n2+5mn+2m−n−1 flops. Then, a client

encrypts its coefficient matrix by multiplying it with two per-

mutation matrices, which takes 2n2 flops. Similarly, the client

performs 2n2 multiplications to decrypt the received inverse

matrix. To solve an LSE the client performs an additional

matrix-vector multiplication. Thus, the total computational

complexity is 12n2+5mn+2m−2n−1, i.e., O(mn), flops.

The secure outsourcing proposed in [19] requires a client

to perform a problem transformation that takes one diagonal

matrix inversion, a matrix-vector multiplication, the multipli-

cation of diagonal matrix and a matrix with a zero diagonal,

the multiplication of a diagonal matrix and a vector, and

an additive homomorphic encryption of the elements of the

coefficient matrix. These operations take a total of 3n2 − n

flops plus n2 homomorphic encryptions. Then in each iteration

the client decrypts a vector and performs a vector addition,

which takes n flops and n decryptions. Considering the

transformation of an arbitrary coefficient matrix into a square

matrix, the total computational complexity for this work is

O(mn) flops +O(n2) encryptions.

B. Memory I/O Complexity

As mentioned before, to better capture the external memory

I/O requirement of large-scale LSEs, we propose a new defini-

tion of external memory I/O complexity, which is the number

of values that are read/written from/into external memory. The

memory I/O complexity of the proposed scheme is analyzed

as follows. If the original LSE system is not symmetric and

positive definite, the CC runs Algorithm 1, which needs to

read the original coefficient matrix and the constant vector,

and write the new coefficient matrix and the new constant

vector. These operations take mn+m+n2+n I/O operations.

In line 2 of Algorithm 2, to construct Â′, the CC reads

A′ and writes Â′ to external memory, which takes 2n2 I/O

operations. Computing r0 requires one read of b′ which takes

n I/O operations. In the main iteration phase, the CC is able

to make all of its operations within the RAM memory. At

the final iteration, the CC stores the solution x∗ into the

external memory, which takes n I/O operations. Therefore,

the total memory I/O complexity of our scheme is no more

than 3n2 +mn+m+ 3n.

In [17], the CC hides its coefficient matrix using permuta-

tion matrices. It needs one read of A′ and one write of the

resulting matrix, i.e., 2n2 I/O operations. The client decrypts

the received inverse matrix similarly, which takes another 2n2

I/O operations. To find the solution vector, the CC performs

a read of the inverse matrix and vector b′ and a write of the

final solution, which takes n2+2n I/O operations. Note that as

mentioned above, transforming an arbitrary coefficient matrix

and the corresponding constant vector incurs mn+m+n2+n
memory I/O operations. The memory I/O complexity in [17]

for general matrices is thus 6n2 +mn+m+ 3n.

In [19], the CC protects its data by transforming the problem

through a matrix transformation, which takes 3n2 + n I/O

operations, and then encrypting the coefficient matrix, which

takes additional 2n2 I/O operations. We consider that the

CC performs all the computations during iterations within its

RAM memory, and at the final iteration stores the result in

the external memory, which takes n I/O operations. Similarly,

considering the memory I/O operations incurred by trans-

forming an arbitrary coefficient matrix and the corresponding

constant vector, the total memory I/O complexity for the CC

is 6n2 +mn+m+ 3n I/O operations.

A summary of computational and memory I/O complexity

comparison between our algorithm and previous works is

also shown in Table I. Note that previous works assume

square matrices in their complexity analysis. Although we

have analyzed the complexities of several existing schemes,

to facilitate more inclusive comparison, we consider square

matrices as well, i.e., m = n.

TABLE I
COMPUTATIONAL AND MEMORY I/O COMPLEXITY COMPARISON

Algorithm Computational Complexity Memory I/O Complexity Matrix Type
Gennaro et. al [14] O(n2) FHE crypt ops 6n2 + 4n I/O ops General

Wang et. al [15] [16] O(nρ) flops 6n2 + 4n I/O ops General

Lei et. al [17] O(n2) flops 7n2 + 4n I/O ops General

Attallah et. al [18] O(n2) flops 8n2 + 4n I/O ops General

Wang et. al [19] O(n2) flops +O(n2) crypt ops 7n2 + 4n I/O ops Diagonally Dominant

Our scheme O(n2) flops + O(n) bit ops 4n2 + 4n I/O ops General

C. Privacy Analysis

Exploring the PPCGM algorithm proposed in Section IV,

we observe that the CS only has access to the transformed

coefficient matrices Â0/Â′ and the conjugate vector pk.

According to Theorem 1, the transformed matrices Â0/Â′

are computationally indistinguishable from a random matrix.

Thus, the CS cannot derive any information about the elements

of coefficient matrices A/A′ from the transformed matrices

Â0/Â′.
We also observe that the CS is unable to derive information

about the solution vector xn. Specifically, to calculate xn the

CS needs the knowledge of αk, which is calculated with rk.

However, the CC keeps αk and rk private. We also note from

(21) that even if the CS stores pk for all k, it cannot calculate

rk because βk is kept private by the CC. Moreover, from (18),

rk also remains unknown from the CS since it would need the

coefficient matrix A′ to find it.

In addition, by keeping αk and rk private, the CC also

prevents the CS to learn about the vector b′ and hence b.

We also note that different from [19] where privacy can only

be protected if the algorithm converges within n iterations, the

privacy in our algorithm can be protected no matter how many

iterations are needed.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the computational and memory

I/O complexity of the proposed scheme for secure outsourcing

of large-scale LSEs. We implement both the CC and the CS

parts of the algorithm in Matlab 2013b. We run the CC on

a laptop with a dual-core 2.4GHz CPU, 4GB RAM memory,

and a 320GB hard disk at 5,400RPM. The CS is implemented

on Amazon Elastic Compute Cloud (EC2). As explained in

Section IV-B3, transforming A into A′ can be done just once

for many LSEs. Therefore, we focus on the performance of

solving A′x = b′ with coefficient matrices of dimension n×n,

with n ranging from 5, 000 to 30, 000.

We first explore the computing time of our algorithm,

in which the CC shifts most of the computational burden

to the cloud by outsourcing matrix-vector computations. We

compare our results to the iterative algorithm in [19] with

768-bit encryptions, which is their best performing case. We

notice that [19] employs the Jacobi method to solve diagonally

dominant matrices, which may not converge when applied to a

general matrix. Thus, we compare the time that the CC takes to

complete the computations in each iteration of both algorithms.

The results are summarized in Table II. We observe that the CC

TABLE II
COMPARISON OF AVERAGE COMPUTING TIME PER ITERATION FOR THE

CC

Matrix Size Our Algorithm [19]
n = 5, 000 0.70 ms 27.82 s
n = 8, 000 0.72 ms 46.06 s
n = 10, 000 0.76 ms 56.32 s
n = 30, 000 1.50 ms 121.81 s

TABLE III
COMPARISON OF TOTAL MEMORY I/O ACCESS TIME FOR THE CC

Matrix Size Our Algorithm [17]
n = 5, 000 3.4 min 6.0 min
n = 8, 000 13.5 min 23.6 min
n = 10, 000 14.2 min 24.8 min
n = 15, 000 23.4 min 40.8 min
n = 30, 000 64.7 min 171.3 min

is able to complete each iteration much faster in our scheme

than in [19]. For example, in the case when n = 5, 000 the CC

in our algorithm completes an iteration in only 0.7ms, while

it takes 27s in [19], a difference of five orders of magnitude.

We also notice that as the dimension of the matrix increases,

our performance gain is even more obvious. This is due to

the use of regular arithmetic in our scheme but the use of the

computationally expensive homomorphic decryptions in [19].

We then evaluate the total memory I/O complexity of our

algorithm. Again, since [19] may not converge when applied to

a general matrix, we compare such cost of our scheme with

that of [17]. We can see from Table III that our algorithm

has much lower memory I/O cost compared to [17], which

is consistent with our I/O complexity analysis. For example,

when n = 5, 000, the CC’s total memory I/O access time is

3.4 minutes in our scheme while 6.0 minutes in [17]. When

n goes to 30, 000, the CC’s total memory I/O access time is

64.7 minutes in our scheme while 171.3 minutes in [17]. This

shows a significant difference, i.e., up to 62% time saving in

our algorithm.

We also explore the total running time of the proposed

algorithm in Table IV. We disregard the communication time

with the cloud so that we can focus on the total computing

and memory I/O access time. We observe that the total running

time savings offered by our algorithm are very attractive. For

example, in the case of n = 5, 000 our scheme solves the

large-scale LSE in 3.6 minutes, while the scheme in [17] takes

6.2 minutes, indicating 42% time saving in our algorithm.

Moreover, in the case of n = 30, 000, the total running time

of our algorithm is 66.9 minutes, compared to a total of 192.7

TABLE IV
COMPARISON OF TOTAL RUNNING TIME

Matrix Size Our Algorithm [17]
n = 5, 000 3.6 min 6.2 min
n = 8, 000 13.7 min 24.6 min
n = 10, 000 14.5 min 26.7 min
n = 15, 000 23.9 min 43.6 min
n = 30, 000 66.9 min 192.7 min

5000 10000 15000 20000 25000 30000
0

20

40

60

80

100

120

140

160

180

200

n

T
im

e(
m

in
ut

es
)

Our Scheme

[17]

Fig. 2. The total running time of our algorithm compared with that of [17].

minutes in [17]. Thus, our algorithm achieves as high as 65%

time saving, which is very impressive. In addition, from Table

III and Table IV, we can tell that memory I/O operations lead

to a very significant part of the total running time, which

shows the impact that memory I/O complexity has on the

overall algorithm performance. Therefore, low I/O complexity

is indispensable for a practical outsourcing algorithm.

We finally plot Fig. 2 to more clearly compare the total

running time of our algorithm with that of [17]. In accordance

to our theoretical results, we observe that the total running time

in each algorithm grows quadratically as the dimension of the

coefficient matrix n increases. We also notice that the time

saving of our algorithm becomes more and more significant

compared to that of [17] as n increases.

VII. CONCLUSIONS

In this paper, we have investigated the problem of securely

outsourcing large-scale LSEs. In particular, to protect the cloud

client’s privacy, we develop a privacy-preserving matrix trans-

formation based on linear algebra and show that the resulting

matrix is computationally indistinguishable from a random

one. Then, we propose an algorithm based on the conjugate

gradient method that can solve large-scale LSEs efficiently

while preserving the client’s privacy. Formal analysis shows

that our proposed algorithm has much lower computational

and memory I/O complexities than previous works, and pro-

tects the client’s privacy well. We finally conduct extensive

experiments on Amazon Elastic Compute Cloud (EC2) and

find that our algorithm offers significantly less total running

time compared to previous works.

REFERENCES

[1] H.-C. Chu, D.-J. Deng, and J.-H. Park, “Live data mining concerning
social networking forensics based on a facebook session through aggre-
gation of social data,” Selected Areas in Communications, IEEE Journal
on, vol. 29, no. 7, pp. 1368–1376, August 2011.

[2] C. Jiang, Y. Chen, and K. Liu, “Graphical evolutionary game for
information diffusion over social networks,” Selected Topics in Signal
Processing, IEEE Journal of, vol. 8, no. 4, pp. 524–536, Aug 2014.

[3] R. R. Kao, D. T. Haydon, S. J. Lycett, and P. R. Murcia, “Supersize
me: how whole-genome sequencing and big data are transforming
epidemiology,” Trends in Microbiology, vol. 22, no. 5, pp. 282–291,
2014, special Issue: Omics: Fulfilling the Promise.

[4] A. Ipakchi and F. Albuyeh, “Grid of the future,” Power and Energy
Magazine, IEEE, vol. 7, no. 2, pp. 52–62, March 2009.

[5] President’s Council of Advisors on Science and Technology, “Big data
and privacy: A technological perspective,” May 2014. [Online].
Available: http://www.whitehouse.gov/sites/default/files/microsites/ostp/
PCAST/pcast_big_data_and_privacy_-_may_2014.pdf

[6] T. Kraska, “Finding the needle in the big data systems haystack,” Internet
Computing, IEEE, vol. 17, no. 1, pp. 84–86, Jan 2013.

[7] Y. Simmhan, S. Aman, A. Kumbhare, R. Liu, S. Stevens, Q. Zhou,
and V. Prasanna, “Cloud-based software platform for big data analytics
in smart grids,” Computing in Science Engineering, vol. 15, no. 4, pp.
38–47, July 2013.

[8] E. E. Schadt, M. D. Linderman, J. Sorenson, L. Lee, and G. P. Nolan,
“Computational solutions to large-scale data mnagement and analysis,”
Nature Reviews Genetics, vol. 11, no. 9, pp. 647–657, September 2010.

[9] H. Demirkan and D. Delen, “Leveraging the capabilities of service-
oriented decision support systems: Putting analytics and big data in
cloud,” Decision Support Systems, vol. 55, no. 1, pp. 412–421, 2013.

[10] E. Kohlwey, A. Sussman, J. Trost, and A. Maurer, “Leveraging the cloud
for big data biometrics: Meeting the performance requirements of the
next generation biometric systems,” in IEEE World Congress on Services
(SERVICES), Washington DC, USA, July 2011.

[11] U. Kang, D. Chau, and C. Faloutsos, “Pegasus: Mining billion-scale
graphs in the cloud,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Kyoto, Japan, March 2012.

[12] S. Sakr, A. Liu, D. Batista, and M. Alomari, “A survey of large scale data
management approaches in cloud environments,” IEEE Communications
Surveys Tutorials, vol. 13, no. 3, pp. 311–336, March 2011.

[13] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against
state estimation in electric power grids,” in ACM Conference on Com-
puter and Communications Security, Chicago, Illinois, USA, 2009.

[14] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers,” in Advances in
Cryptology CRYPTO 2010, Santa Barbara, CA, USA, 2010.

[15] C. Wang, K. Ren, and J. Wang, “Secure and practical outsourcing of
linear programming in cloud computing,” in International Conference
on Computer Communications, Shangai, China, 2011.

[16] C. Wang, B. Zhang, and K. R. J. A. Roveda, “Privacy-assured outsourc-
ing of image reconstruction service in cloud,” IEEE Transactions on
Emerging Topics in Computing, vol. 1, no. 1, pp. 166–177, June 2013.

[17] X. Lei, X. Liao, T. Huang, H. Li, and C. Hu, “Outsourcing the large
matrix inversion computation to a public cloud,” IEEE Transaction on
Cloud Computing, vol. 1, no. 1, pp. 78–87, January-June 2013.

[18] M. J. Atallah, K. Pantazopoulos, J. R. Rice, and E. E. Spafford, “Secure
outsourcing of scientific computations,” in Trends in Software Engineer-
ing, ser. Advances in Computers, M. V. Zelkowitz, Ed. Elsevier, 2002,
vol. 54, pp. 215 – 272.

[19] C. Wang, K. Ren, J. Wang, and Q. Wang, “Harnessing the cloud for
securely outsourcing large-scale systems of linear equations,” IEEE
Transactions on Parallel and Distributed Systems, vol. 24, no. 6, pp.
1172–1181, June 2013.

[20] F. Chen, T. Xiang, and Y. Yang, “Privacy-preserving and verifiable
protocols for scientific computation outsourcing to the cloud,” Journal
of Parallel and Distributed Computing, vol. 74, no. 3, pp. 2141 – 2151,
2014.

[21] J. Katz and Y. Lindell, Introduction to Modern Cryptography. Chapman
and Hall/ CRC, 2008.

[22] A. Leon-Garcia, Probability, Statistics, and Random Processes for
Electrical Engineers. Prentice Hall, 2008.

[23] J. Nocedal and S. J. Wright, Numerical Optimization. Springer, 2006.
[24] G. H. Golub and C. F. V. Loan, Matrix Computations. The John

Hopkins University Press, 2013.
[25] M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-

dimensionally equidistributed uniform pseudo-random number genera-
tor,” ACM Transactions on Modeling and Computer Simulation, vol. 8,
no. 1, pp. 3–30, January 1998.

