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Abstract—Electric power systems are critical infrastructure
and are vulnerable to contingencies including natural disasters,
system errors, malicious attacks, etc. These contingencies can
affect the world’s economy and cause great inconvenience to our
daily lives. Therefore, security of power systems has received
enormous attention for decades. Recently, the development of
the Internet of Things (IoT) enables power systems to support
various network functions throughout the generation, transmis-
sion, distribution, and consumption of energy with IoT devices
(such as sensors, smart meters, etc.). On the other hand, it also
incurs many more security threats. Cascading failures, one of
the most serious problems in power systems, can result in catas-
trophic impacts such as massive blackouts. More importantly, it
can be taken advantage by malicious attackers to launch phys-
ical or cyber attacks on the power system. In this paper, we
propose and investigate cascading failure attacks (CFAs) from a
stochastic game perspective. In particular, we formulate a zero-
sum stochastic attack/defense game for CFAs while considering
the attack/defense costs, budget constraints, diverse load shed-
ding costs, and dynamic states in the system. Then, we develop a
Q-CFA learning algorithm that works efficiently in power systems
without any a priori information. We also formally prove that the
convergence of the proposed algorithm achieves a Nash equilib-
rium. Simulation results validate the efficacy and efficiency of
the proposed scheme by comparisons with other state-of-the-art
approaches.

Index Terms—Cascading failure attacks (CFAs), Nash equilib-
rium, Q-CFA learning algorithm, stochastic games.

I. INTRODUCTION

ELECTRIC power systems are critical infrastructure and
the failure of these systems can lead to severe eco-

nomic, social, and security consequences. Thus, the security
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of these systems is crucial. The recent development of the
Internet of Things (IoT) technologies helps traditional elec-
tric power systems to be transformed into smart grids, and
offers tremendous promise of future smart grids [1]. In partic-
ular, IoT technologies enable power systems to support various
network functions throughout the generation, transmission,
distribution, and consumption of energy by incorporating IoT
devices (such as smart sensors, actuators and smart meters),
as well as by providing the connectivity, automation, etc. [2].
However, the use of such IoT devices also brings new secu-
rity challenges. The security of power systems has now been
further aggravated by various malicious cyber attacks that
can be launched on the IoT devices such as denial-of-service
(DoS) attacks [3], false data injection attacks [4], unobserv-
able cyber attacks through topology errors [5], etc. Due to
the expansive geographical coverage and complex interde-
pendencies among system components, protecting the power
system is data and computing intensive and hence extremely
challenging [6].

Cascading failures are a very concerning security problem
in the power system. They are system failures where the failure
of a system component can trigger the successive components
and a series of unpredictable chain events in the system that
can possibly result in a large-scale collapse of the system.
Taking the cascading failure in transmission networks [7] as
an example, when a transmission line fails, it will shift its load
it has been supplying to the other lines that share the same bus
with it. Those connected lines may be pushed beyond their line
capacities, become overloaded, and further shift their loads to
other lines. Such sudden load spikes could induce overloaded
lines into loss of service due to the operation of the protec-
tion system or failure, which quickly spreads to other lines
before the system operator can conduct any countermeasures,
hence finally taking down the entire system in a very short
period of time [8]. This is exactly what happened in the 2003
Northeastern blackout, where the failure of a critical transmis-
sion line triggered a cascade of failures, resulting in shutting
down a portion of the power system that affected more than 55
million people in the Eastern U.S. and Canada [9]. Cascading
failures have attracted intensive attention because of their criti-
cality in the power system operations. Chen et al. [7] proposed
a hidden failure model to assess the cascading dynamics in
power systems. Rahnamay-Naeini et al. [10] constructed a
probabilistic model for cascading failures while retaining key
physical attributes and operating characteristics of bulk power
systems.
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As cascading failures can lead to catastrophic damages
in the power system and possibly take down the entire
system, there is strong motivation for attackers to launch
deliberate attacks by taking advantage of it, which we call
“cascading failure attacks (CFAs).” For example, a malicious
attacker can launch CFAs to trip the critical transmission
lines and in turn induce a massive cascading failure [11].
Motter and Lai [12] studied cascading-based attacks on com-
plex networks. Zhu et al. [13] assessed the line vulnerability
and attack strategies from an attacker’s perspective in the smart
grid. Yan et al. [14] also investigated the topology and cas-
cading attacks in the smart grid. These previous works mainly
focus on the impact of cascading attacks but do not consider
the defense strategies in such systems. In fact, analyzing CFAs
in the power system is a very challenging problem because of
the unpredictable cascading effect, the complex interactions
between the attacker and the system operator, the extremely
high problem dimensionality in a large-scale system, and so
on [15].

In this paper, we explore CFAs in the power system, from
a game theoretic perspective. Specifically, defending critical
infrastructures against malicious attacks requires system oper-
ators to make optimal decisions about where to deploy limited
resources to improve system resilience against adversaries.
Game theory can naturally be used to provide the system
operators with guidance on strategies for infrastructure protec-
tion [16]–[19]. For instance, Salmeron et al. [17] formulated
the competition between a defender and an attacker as a
leader–follower game. Chen et al. [18] proposed a static game
framework for defending the power system against deliber-
ate attacks. Rao et al. [19] studied a Stackelberg game while
taking both infrastructure survival probability and costs into
account. These works consider the competition between the
attacker and defender as a one-time event. However, power
system protection can be a continuous process where an
attacker and a defender interact with each other many times
across different dynamic states [20]. For example, the nation-
wide power system in Yemen suffered from repeated attacks on
transmission lines in 2014, which very soon left Yemen in total
darkness [21]. Therefore, an attack-defense interaction model
that explicitly considers the temporal aspects of the dynamic
system states and the long-term effects is indispensable.

To this end, we formulate a zero-sum stochastic game to
characterize the long-term interactions between an attacker
and a system operator in CFAs. Specifically, we consider that
an attacker deploys limited resources to disrupt the compo-
nents in the power system, such as transmission lines and
substations, through either physical attacks or cyber attacks
on the IoT devices. Maximizing the amount of load shed-
ding due to disruption is usually adopted as the objective of
the attacker in previous studies. However, loads on different
transmission lines are of different importance to the system,
and each transmission line contributes differently to the over-
all system reliability and security [7]. Therefore, we consider
that the attacker’s objective is to maximize the total cost of the
load shedding that is defined as a nondecreasing function of
the total amount of shedding load, making the problem more
challenging. On the other hand, a system operator deploys

limited resources to minimize the total cost of load shedding
by taking actions such as reinforcing a vulnerable transmission
line or repairing a damaged line. Because the objectives of the
attacker and the system operator are conflicting, we model the
interactions in dynamic environments between two players as
a zero-sum stochastic game.

Stochastic games are difficult to solve due to the possi-
ble large problem dimensionality and their stochastic nature.
Value iteration and policy iteration [22], such as iteratively
improving the value functions or policies, respectively, have
been developed to solve this problem. Unfortunately, such
dynamic programming-based algorithms need to enumerate all
the system states, the number of which is obviously too large
in a large-scale power system for the solution to be tractable.
Thus, these algorithms suffer from the well known “curse
of dimensionality” problem [23]. Furthermore, although such
approaches are proven to converge to the optimum, they are
under the assumption that all the dynamic system parameters,
for example, reward functions and transition probabilities, are
always available to the players, which may not always hold
in practice, especially to the attacker in the power system.
Some previous works on stochastic game analysis also assume
complete a priori system information. Instead of having such
strong assumptions, we develop a Q-CFA learning algorithm
to solve our stochastic game which can address the dimen-
sionality problem and does not need any a priori system
information. The intuition behind the learning process is that
learning through past experience facilitates more intelligent
decision making and performance optimization.

The main contributions of this paper are briefly summarized
as follows.

1) We formulate a zero-sum stochastic game for an
attacker and a system operator while considering the
attack/defense costs, limited resources, and diverse load
shedding costs in the system.

2) We propose a Q-CFA learning algorithm that works effi-
ciently without having a priori knowledge of all system
information.

3) The proposed scheme is formally proved to converge
fast and achieve the Nash equilibrium.

4) Simulation results demonstrate that the proposed scheme
achieves convergence and has much better performance
than the benchmark algorithms.

The rest of this paper is organized as follows. Section II
introduces our system models in detail, including DC power
network model, cascading hidden-failure model, as well as
the threat and defense models. We formulate the zero-sum
stochastic game in the dynamic environment in Section III,
which is solved by the proposed Q-CFA learning algorithm
in Section IV. In Section V, we conduct extensive simula-
tions to validate the convergence and efficiency of our scheme,
followed by the conclusion drawn in Section VI.

II. SYSTEM MODELS

In this section, we introduce DC power network model, cas-
cading hidden failure model, as well as the threat and defense
models used in this paper, respectively.
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A. DC Power Network Model

We consider a power network consisting of N = G ∪ D
buses and L = {1, . . . , l, . . . , L} transmission lines. We
assume that each bus is either a generation bus, denoted by
g ∈ G, or a load bus, denoted by d ∈ D. Bus n1 is iden-
tified as the reference bus. Similar to [24] and [25], we use
DC power flow approximation of the AC system. Denote by
� = [θ1, . . . , θn, . . . , θN]T , PG = [pG

1 , . . . , pG
g , . . . , pG

G]T , and
D = [d1, . . . , dd, . . . , dD] as the bus voltage angle vector,
the real power generation vector and the load demand vec-
tor, respectively (note that N = |N |, G = |G|, and D = |D|).
Then, the DC power flow equations are formulated as

Pinj = KgPG −KdD (1)

� = BPinj (2)

f (l) = bij
(
θi − θj

)
(3)

where Pinj = [pinj
2 , . . . , pinj

n , . . . , pinj
N ]T is a vector of nodal

injection power for buses 2, . . . , N, Kg is the bus-generation
incidence matrix, and Kd is the bus-load incidence matrix.
θi and θj are the phase angles of bus i and bus j, respec-
tively, that are connected by transmission line l. f (l) is the
real power flow on line l. B is the N ×N system susceptance
matrix, in which bii = −∑j∈Si,j �=i (1/xij) and bij = (1/xij),
where xij is the reactance between bus i and bus j. Notice that
in this DC power network model, (1) is the power balance
constraint. Equation (2) calculates the phase angles for all the
buses, which is used for the power flow calculation on each
line in the network as shown in (3).

B. Cascading Hidden Failure Model

Cascading failures are system failures where the failure of
a system component triggers the successive components and
possibly spreads among the entire system. Hidden failures are
among the top reasons for cascading failures in the power
system [7], [10]. Particularly, hidden failure remains unde-
tected until it is triggered by another system failure [26].
In this paper, we study the line protection hidden failure
by considering how protective relays work. Protective relays
are designed to trip the circuit breakers on the transmission
lines when any fault is detected. They may incorrectly trip a
transmission line with a load-dependent probability [7], which
may in turn lead to more and more lines tripped due to the
increased load, i.e., the cascading failure. Hidden failures are
undetectable during normal operation but will be exposed as
a direct consequence of other system disturbances such as a
sudden attack or natural disasters. For example, a malicious
attacker can launch false data injection attacks on selected IoT
devices, or physically sever critical transmission lines, and in
turn induce a massive cascading hidden failure [11]. Such sud-
den disturbances may cause the protective relay systems to
inappropriately and incorrectly disconnect circuit elements. In
particular, when transmission line l trips, hidden failures on
all the lines connected with it will be exposed such that those
lines are then exposed to incorrect tripping probabilistically
because of the redistribution of the loads from the tripped
line [27]. Furthermore, if an exposed line trips, then the lines

that are connected to this tripped line will be further exposed
and subject to tripping probabilistically as well, which could
eventually cause a cascade of failures and in the worst case,
may spread across the entire power system and result in a
blackout.

In order to quantify the effects by the cascading failure,
we follow a general cascading hidden failure model in [7].
Specifically, we consider line protection hidden failures in
the power system. Assuming that an attacker launches a suc-
cessful attack and takes down a transmission line l, it will
trigger the cascading effects in the power system. That is,
lines that are connected to this tripped line will be exposed
because of the load redistribution from the tripped line, which
may result in the total flow through the remaining lines to be
larger than the nominal capacities. Based on the observations
in NERC events [28], the probability for an exposed line to
be tripped incorrectly is very low and considered as a con-
stant p, when the load on this line is below its rated capacity,
denoted by Fmax(l), and increases linearly to 1 as the load
approaches 1.4Fmax(l). Furthermore, when the load on the line
is or above 1.4Fmax(l), this line will be tripped immediately for
security purposes. Thus, the probability of an exposed line trip-
ping incorrectly, also known as the load-dependent probability,
defined as Pt(l), is

Pt(l) =

⎧
⎪⎪⎨

⎪⎪⎩

p, if 0 ≤ f (l) ≤ Fmax(l)
5(1−p)f (l)+7pFmax(l)−5Fmax(l)

2Fmax(l) ,

if Fmax(l) ≤ f (l) ≤ 1.4Fmax(l)
1, if 1.4Fmax(l) ≤ f (l).

(4)

Based on (4), we are able to determine if exposed lines will
be further tripped after the initial line tripping as a chain of
cascading effects. If the exposed line trips, then the lines that
are connected to this new tripped line will be further exposed
and tripped based on (4). Therefore, we can model the poten-
tial spread of cascading hidden failure in the power system by
the protective relays in all the transmission lines. Notice that
our framework accounts for the possibility that lines that are
not connected to failed lines may also fail. For example, let
us assume that line l1 is connected to l2, l2 is connected to
l3, but l1 is not connected to l3. When line l1 is tripped, l2
may be tripped, and l3 could further be tripped based on its
load-dependent probability. Therefore, in each round the num-
ber of tripped lines is a variable and can be greater than 1.
This procedure will go on until there are no further line trip-
pings in the system, then the system will conduct the optimal
power flow for the current system configuration, which will be
clear in Section III after we formulate the zero-sum stochastic
game.

C. Threat Model

In the power system, an attacker aims to disrupt the system
by either physical attacks such as severing transmission lines,
damaging critical infrastructure like transmission towers, or
cyber attacks on IoT devices, e.g., false data injection attacks
and DoS attacks on sensors [4]. We also assume that the
attacker has the knowledge of the system topology and that
is able to launch a combination of cyber and physical attacks
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that can affect many more components across geographical
locations. The attacks can be launched on any components of
the power system. Without loss of generality, in this paper we
use attacks on transmission lines as an example, which are
one of the most common and far-ranging targets in the power
system [29].

We first define two binary variables as follows:

ε(l) =
{

1, if line l is attacked
0, otherwise

(5)

δ(l) =
{

1, if line l is exposed
0, otherwise

(6)

where ε(l) is equal to 1 if the transmission line l is attacked by
the attacker, and δ(l) is equal to 1 if line l is exposed according
to the cascading hidden failure model in Section II-B.

For practicality, we assume that the malicious attacker has
limited resources to launch attacks. Specifically, it can only
attack a limited number of transmission lines in one action.
Therefore, the attacker’s action is constrained by

∑

l∈L
1ε(l)=1 = ba (7)

where ba denotes the attacker’s limited resources, i.e., the max-
imum number of transmission lines that can be attacked in one
action, and 1A is an indicator function that is equal to 1 when
the event A is true and zero otherwise.

Subject to resource constraints, the objective of the attacker
is to cause the most damage to the power system. In the past,
damage is simply measured as the total amount of loads that
have to be shed due to line failures [8]. However, because dif-
ferent loads may have different adverse impacts on the power
system, it is more appropriate if we use the costs of load shed-
ding as the objective of the attacker instead of the amount of
load that is shed. To this end, we denote the cost function
for the transmission line l as ul(·), which is a nondecreasing
function with regard to the shed load on the transmission line
l, i.e., d̂(l). Consequently, the objective of the attacker is to
maximize the total cost of the loads that are shed in the power
system, i.e., to maximize U =∑l∈L ul(d̂(l)).

D. Defense Model

Similarly, a system operator, who could be the power system
operator or a third-party system protector, aims to protect the
power system from the attack. For illustrative purposes, we
define the available actions by the system operator as repairing
a damaged line or compromised IoT devices, or reinforcing an
important line such that

β(l) =
{

1, if line l is repaired or reinforced
0, otherwise

(8)

where β(l) indicates if the system operator chooses to repair
the transmission line l or reinforce it. We note that by rein-
forcement, we mean that the system operator can reinforce
the protection on a specific line by adding physical barriers
or deploying additional security personnel. A system operator
can also adopt new malicious data analysis schemes that can
detect compromised PMUs and perform healing actions such

as firmware updates to defend cyber attacks. Since some par-
ticular lines are more likely to start a cascading failure, system
operators are willing to allocate more resources to these lines
to enhance the security of their system. We also assume that
the system operator has limited resources to protect the power
system, that is,

∑

l∈L
1β(l)=1 = bo (9)

where bo denotes the system operator’s limited resources, i.e.,
the maximum number of transmission lines that it can repair
or reinforce in one action. Besides, the objective of the system
operator of the power system is to find the best strategy that
minimizes the total cost of load shedding in the power system,
i.e., to minimize U =∑l∈L ul(d̂(l)).

Therefore, as the objectives of the system operator and the
attacker are conflicting and two players compete with each
other through dynamic system states, we formulate a zero-sum
stochastic game that will be introduced in the next section.

III. ZERO-SUM STOCHASTIC GAME FOR CFAS

As presented above, the objectives of the attacker and that
of the system operator in CFAs are opposite to each other.
Therefore, in this section, we formulate a zero-sum stochastic
game for the attacker and the system operator in the power
system.

Before delving into details of the formulation for the zero-
sum stochastic game, we first briefly introduce stochastic
games. In game theory, a stochastic game is a dynamic game
with probabilistic transitions played by several players [30],
which can be considered as an extension of Markov decision
processes [31]. The game is played in a sequence of stages.
Specifically, at the beginning of each stage, the game is in a
given state and players select actions independently and simul-
taneously based on their own resources and constraints at the
current state, and each player will then receive an immediate
reward that results from the chosen actions and the current
state. Thereafter, the game moves to a new random stage, the
transition probability of which is determined by both actions
from the players and the previous state. This procedure repeats
continuously for a number of stages and each player endeav-
ors to maximize their long-term reward, that is defined as the
discounted sum of the immediate rewards at all stages.

A. States, Actions, and State Transitions

By considering the interactive competition between the
attacker and the system operator, we now formulate the CFAs
as a stochastic game G. In this game G, there are a set of
system states, denoted by S , in which each state s ∈ S is a
vector that denotes the current status of all the transmission
lines. we use time-slot-based system as the temporal resolu-
tion in our model [20]. Without loss of generality, we define
the status of each transmission line as “up,” denoted by u, or
“down,” denoted by w, when the line is functioning well or
malfunctioning after being attacked, respectively. The stochas-
tic game proceeds in a time-slotted fashion. Specifically, in
each time slot, each player will choose an action based on
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Fig. 1. Flow chart for the power system after being attack.

the current system state so as to optimize its own objective.
We denote by MA(s) and MO(s) the set of all the possible
actions that the attacker and the system operator can take at
state s, respectively. As discussed in Sections II-C and II-D,
for the attacker, each a ∈MA(s) indicates the set of transmis-
sion lines to be attacked. On the other hand, for the system
operator, each o ∈MO(s) refers to a set of transmission lines
to be repaired (if not working) or reinforced (if still work-
ing but vulnerable to attacks). Each action a ∈ MA(s) and
o ∈ MO(s) will be selected by the attacker and the system
operator, respectively, in each state s, with a certain probability
denoted by πa(s) and πo(s).

Recall that each player selects their actions independently
and simultaneously in each stage. We denote puwr and puw as
the probabilities that a functioning transmission line fails upon
attack with and without reinforcement by the system operator
in the same time slot, respectively. Similarly, we denote pwua

and pwu as the probabilities that a nonfunctioning line recovers
after repair with and without being attacked in the same time
slot, respectively. The following constraints must be satisfied,
0 ≤ puwr < puw ≤ 1 and 0 ≤ pwua < pwu ≤ 1 and in practice,
these probabilities can be obtained by either conducting sim-
ulations or observing historical records. We can see that these
probabilities determine the transition probability T(a, o, s, s′)
from state s to state s′ under the actions a and o by the attacker
and the system operator, respectively. For example, suppose at
the beginning all lines in the system are up and there are no
actions from the attacker or the system operator. Then, when
the attacker and the system operator choose the same line to
attack and reinforce, respectively, the probability for the power
system to remain in the same state is 1−puwr. Similarly, when
the attacker attacks a line l and the system operator chooses
to reinforce another line l′, the probability for the system to
move to another state where only line l is down is puw.

B. Immediate Rewards

As mentioned before, the objectives of the attacker and the
system operator are opposite; maximizing/minimizing the total
cost of the load shedding in the power system. At each stage
of the game, both attacker and system operator will receive an
immediate reward defined by the actions taken by them (the

attacker a, the system operator o) at state s. For example, the
immediate reward for the attacker, denoted by UA(a, o, s), is
the total cost for load shedding.

We show in Fig. 1 what happens sequentially in one stage
of the game where the attacker and the system operator take
actions a and o, respectively, at state s. Particularly, after both
players take actions, some transmission lines might be tripped,
and hence the system immediately adjusts according to the
power equations (1)–(3) [32]. Then the system checks whether
there are any lines overloaded. If so, the protective relays
trip the overloaded lines and the system readjusts accordingly
until there are no overloaded lines. Otherwise, the exposed
lines, which share the same bus with the tripped lines, are
tripped with probability Pt(l), based on the cascading model
in Section II-B. The cascading effect continues until there are
no line outages. Finally, the power system performs security
constrained optimal power flow, which is formulated as an
optimization problem to minimize the total cost of load shed-
ding, i.e., U(a, o, s), in the current configuration of power
system

minimize U(a, o, s) =
∑

l∈L
ul

(
d̂l

)

s.t.
∑

g∈G
Pg +

∑

l∈L
d̂l −

∑

l∈L
dl = 0 (10)

Pmin
g ≤ Pg ≤ Pmax

g ∀g ∈ G (11)

− Fmin(l) ≤ f (l) ≤ Fmax(l) ∀l ∈ L (12)

0 ≤ d̂l ≤ dl ∀l ∈ L (13)

where (10) is the power balance constraint, (11) is the genera-
tion capacity constraint for each generation unit, (12) limits the
maximum power flow on each transmission line, and (13) indi-
cates that the shed load cannot exceed the original load on the
load bus. After solving the above minimization problem, we
can shed loads when necessary. In practice, utility companies
have several tools to reduce users’ load demands. For exam-
ple, industrial users, which account for 60% of total energy
consumption [33], often have contracts with utility companies
where they commit to reduce their load after a request from
the utility companies in exchange for reduced energy prices;
under real-time energy pricing, all users can be incentivized
to reduce their energy consumption by significantly increasing
prices; and system operators can disconnect complete sections
of the power system by opening switches.

Therefore, we have the immediate rewards for the attacker
and the system operator, known as the payoff of the game
at state s given by U(a, o, s) for all a ∈ MA(s) and
o ∈MO(s). Notice that this framework can also account for
the case where the system is disconnected into nonconnected
islands. Specifically, when the system is disconnected to sev-
eral islands, both players still take actions in the whole system
subject to the limited resources ba and bo. After there are no
more line trippings in the system, we conduct the OPF for
every island and then the system state transits to the next state.

Because the objective function is convex and all the con-
straints are linear, this problem can be easily solved and we can
obtain the immediate rewards for each player at any system
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status. Actions a and o executed at state s will bring the system
state to the next state, resulting in further immediate rewards,
i.e., U(a′, o′, s′), at the next state s′. Thus, actions taken at
dynamic states will finally accrue a long-term reward as the
game continues. The objective of both players is to obtain the
optimal expected long-term reward, which will be discussed
next.

IV. OPTIMAL STRATEGIES OF THE STOCHASTIC GAME

In this section, we first present the definition of optimal
strategies. Then, we develop a Q-CFA learning algorithm to
find the optimal strategies for the zero-sum stochastic game.

A. Optimal Strategies

We refer to the optimal strategies as the mixed strategies of
all actions chosen by the players that maximize their expected
long-term rewards [34]. In this paper, we consider the case of
stationary policies where the action selection probabilities, i.e.,
πA(s) and πO(s), do not change over time. In other words, we
are interested in finding the stationary policies for each player
at each state s.

From the attacker’s point of view, we let VA(s) denote the
attacker’s expected long-term reward under the optimal strate-
gies when the game starts at state s, and QA(a, o, s) as the
expected long-term reward for taking action a while the system
operator selects the action o when the game starts at state s.
Specifically, we have

VA(s) = max
πA(s)

min
πO(s)

∑

a∈MA(s)

∑

o∈MO(s)

πa(s)QA(a, o, s)πo(s)

(14)

where πA(s) = {πa(s)|a ∈ MA(s)}, πO(s) = {πo(s)|o ∈
MO(s)}, and

QA(a, o, s) = U(a, o, s)+ γ ·
∑

s′∈S
VA
(
s′
) · T(a, o, s, s′

)
. (15)

VA(s) and QA(a, o, s) are also called the value of the state
s ∈ S and the quality of the state s given actions a and o,
respectively, for the attacker. T(a, o, s, s′) is the state transi-
tion probability from state s to state s′ after taking actions
a and o. Here the maxmin function can be interpreted as fol-
lows. Because our game is a fully competitive stochastic game
where each player selects an action independently and simul-
taneously at each system state, we need opponent-independent
algorithms to solve this problem [35]. The maxmin func-
tion makes (14) opponent-independent in which the attacker
attempts to maximize its own expected long-term reward under
the worst case assumption that the system operator will always
endeavor to minimize the payoff. Besides, note that (15) states
that QA(a, o, s) is equal to the immediate reward plus the dis-
counted expected optimal value attainable from the next state
s′. In (15), γ ∈ [0, 1) is a discount factor that represents how
much impact the current decisions can have on the long-term
reward. Particularly, when γ equals 0, the game becomes a
one-time-event game [17]–[19]. When γ is larger than 0, a
smaller value of γ emphasizes more the immediate rewards
and a larger γ gives higher weight to the future rewards.

Similarly, the system operator’s expected long-term reward
under the optimal strategies when the game starts at state s,
denoted by VO(s), is

VO(s) = min
πO(s)

max
πA(s)

∑

a∈MA(s)

∑

o∈MO(s)

πa(s)QO(a, o, s)πo(s)

(16)

where QO(a, o, s) is the expected long-term reward for tak-
ing action o while the attacker selects the action a, known
as the quality of the state s for the system operator, and is
formulated as

QO(a, o, s) = U(a, o, s)+ γ ·
∑

s′∈S
VO
(
s′
) · T(a, o, s, s′

)
. (17)

We note that generally VA(s) ≤ VO(s) due to weak dual-
ity, where VA(s) and VO(s) correspond to the primal problem
and the dual problem, respectively. However, in a zero-sum
stochastic game, strong duality holds and we have VA(s) =
VO(s) = V(s) [36, Sec. 5.4.5]. Consequently, the optimal solu-
tions computed individually by the two players, i.e., π∗A(s)
and π∗O(s), are the best responses to each other. We denote by
π∗(s) = {π∗A(s), π∗O(s)} the optimal strategy pair [37], which
is known as the Nash equilibrium point in a stochastic game
and defined as follows.

Definition 1 (Nash Equilibrium): In a zero-sum stochastic
game G, the Nash equilibrium for any state s ∈ S is an optimal
strategy pair π∗(s) = {π∗A(s), π∗O(s)} satisfying

Vπ∗(s)(s) ≥ V{πA(s),π∗O(s)}(s)
Vπ∗(s)(s) ≤ V{π∗A(s),πO(s)}(s).

Therefore, by finding the Nash equilibrium for each state
s, we can obtain the attacker’s and the system operator’s
optimal strategies, specifically, the probability mass distribu-
tions on their action sets MA(s) and MO(s), which result in
the optimal expected long-term reward for the attacker and the
system operator, respectively.

From the attacker’s perspective, the optimal strategies π∗A(s)
(s ∈ S) can be obtained by solving (14) using algorithms like
“value iteration” [22]. Particularly, at the kth iteration, for each
s ∈ S , the attacker needs to solve the following problem:

Vk
A(s) = max

{πa(s)}
min

o∈MO(s)

∑

a∈MA(s)

Qk
A(a, o, s)

× πa(s)

s.t. Qk
A(a, o, s) = U(a, o, s)+ γ ·

∑

s′∈S
Vk−1

A

(
s′
)

× T
(
a, o, s, s′

)

∑

a∈MA(s)

Qk
A(a, o, s) ≥ Vk−1

A (s)

∑

a∈MA(s)

πa(s) = 1

πa(s) ≥ 0 ∀a ∈MA(s)

where Vk
A(s) is the value of the state s in the kth iteration.

The basic idea of value iteration is that it iteratively estimates
the value of QA(a, o, s) and VA(s) using (14) and (15) for
each s ∈ S in each iteration until convergence. The optimal
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strategies can then be obtained after scanning all the avail-
able states and action spaces. The system operator can find
its optimal strategies π∗O(s) (s ∈ S) by following a similar
approach, which is omitted here due to space limit.

Value iteration has been proved to converge to the optimal
results in stochastic games [38]. However, it assumes that
the system information, such as the state transition probabil-
ities T(a, o, s, s′)’s, is a priori knowledge for both players,
which may not be the case in most practical applications.
Moreover, this algorithm needs to enumerate all the system
states and available actions in each iteration in order to obtain
the optimal strategies. Nevertheless, the number of states and
actions grows exponentially with the number of transmission
lines, which obviously makes such algorithms infeasible for
large-scale system applications.

B. Q-CFA Learning Algorithm

In order to account for the drawbacks of previous algo-
rithms, we develop a machine learning based method named
Q-CFA learning algorithm that is based on the minimax-Q
learning framework [34]. The proposed algorithm can gradu-
ally learn the optimal strategies without having any a priori
knowledge of system information such as the state transi-
tion probabilities, i.e., T(a, o, s, s′)’s. Besides, unlike value
iteration and other previous algorithms, it does not need to
scan all the states and actions in each iteration, and hence is
very efficient for power system applications.

The main idea of the proposed algorithm is as follows.
Different from that in (15), we rewrite the quality of state
s for the attacker under actions a and o by the attacker and
the system operator, respectively, i.e., QA(a, o, s), at the kth
iteration into

Qk
A(a, o, s) = (1− α(k)) · Qk−1

A (a, o, s)

+ α(k) ·
[
U(a, o, s)+ γ Vk−1

A

(
s′
)]

(18)

where α(k) = (1/k + 1) is the learning rate that decays over
time, and s′ is the next state after actions are executed in
the current state s. In other words, Qk

A(a, o, s) is updated by
mixing the previous Q-value with a correction from the new
estimate at a learning rate α(k). Then, the value of state s at the
kth iteration, i.e., Vk

a(s), can be updated accordingly by (14).
Note that the quality and the value of state s for the system
operator can be updated in the same fashion.

Specifically, because of their limited resources, both attacker
and system operator only have a limited number of actions
at each stage of the game, which could be very diverse at
different states. At the beginning of each state sk, the algo-
rithm first checks whether the current state has been observed
in previous stages. If so, then both players use the previous
profiles at state sk to initialize parameters such as the action
sets, along with Q and V values. Otherwise, the algorithm
initializes all the variables, and then adds the current state
sk into the observation history set denoted by Hs that con-
tains profiles at all the past states. Subsequently, each player
chooses an action. In particular, with a probability of pexp,
the attacker and the system operator choose to explore their
available action spaces, i.e., MA(s) and MO(s), respectively,

Algorithm 1 Q-CFA Learning Algorithm
1: At State sk, k = 0, 1, ...

If state st has been observed in any previous iteration, i.e.,
st ∈ Hs

initialize πa, πo, Q, V with the recorded profiles in Hs

Otherwise,
generate action sets MA(sk) and MO(sk),
initialize Q(a, o, sk) ← 1, for all a ∈ MA(sk) and o ∈
MO(sk),
initialize πA(sk)← 1

|MA(sk)| and πO(s)← 1
|MO(sk)| ,

2: Choose an action pair {πa, πo} at state sk:
With probability pexp, uniformly and randomly select an
action in the action sets;
Otherwise, return the action pair {πa, πo} obtained in the
initialization;

3: Learn and Update:
Update Qk

A(a, o, sk) according to (18), and Qk
O(a, o, sk)

similarly
Update the optimal strategies π∗A(sk) and π∗O(sk) by

π∗A(sk)← arg max
πA(s)

min
πO(s)

∑

a∈MA(sk)

∑

o∈MO(sk)

πa(sk)Q
k
A(a, o, sk)πo(sk),

π∗O(sk)← arg min
πO(sk)

max
πA(sk)∑

a∈MA(sk)

∑

o∈MO(sk)

πa(sk)Q
k
O(a, o, sk)πo(sk)

Update VA(sk) and VO(sk) according to (14) and (16),
Update α(k + 1)← 1

k+1 ;
4: The system transits to the next state sk+1;
5: If all states’ policies have converged, stop; otherwise,

go to step 1.

and uniformly and randomly select actions. This process is
called exploration. On the other hand, with a probability of
1 − pexp, they choose to take the same actions selected in
the previous initialization step, that is called exploitation. The
intuition here is that the players in Q-learning can either ran-
domly try out one of the available action profiles to possibly
achieve higher reward in the long run, namely exploration, or
attempt to maximize the reward by choosing the best known
action, namely exploitation [39]. Looking into (18), the Q-
CFA learning algorithm only uses the previous predicted state
value, i.e., Vk−1

a (s), which avoids enumerating all the possible
future states for current state s. After both players take actions,
they obtain their immediate rewards, update their Q and V
function values, policies π∗A(sk) and π∗O(sk), and learning rate
α(k), respectively, and then update the profiles for state sk in
the observation history set Hs. Thereafter, the game transits to
the next state sk+1. This procedure goes on until the policies in
all states have converged. The details of the proposed Q-CFA
learning algorithm are described in Algorithm 1.

Notice that in order to update the profiles
for each state, i.e., (π∗A(sk), π

∗
O(sk)), VA(sk), and
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VO(sk), we need to solve the subproblem of
maxπA(sk) minπO(sk)

∑
a∈MA(sk)

∑
o∈MO(sk)

πa(s)Qk
A(a, o, sk)πo

(sk) in the learning process, which turns out to be a matrix
game where the strategies of the attacker and system operator
form the rows and columns of the matrix, respectively,
with payoffs Qk

A(a, o, s) and Qk
O(a, o, s) and we have that

Qk
A(a, o, s) = Qk

O(a, o, sk) = Qk(a, o, sk). Therefore, we
formulate the matrix game as

max
πA(sk)

min
πO(sk)

∑

a∈MA(sk)

∑

o∈MO(sk)

πa(sk)Q
k(a, o, sk)πo(sk). (19)

However, the above optimization problem cannot be solved
directly. In order to achieve the optimal strategies, i.e.,
(π∗A(sk), π

∗
O(sk)), we begin by assuming that the attacker’s

strategies are fixed. Then the problem is reduced to

min
πO(sk)

∑

a∈MA(sk)

πa(sk)Q
k(a, o, sk)

∑

o∈MO(sk)

πo(sk). (20)

As
∑

a∈MA(sk)
πa(sk)Qk(a, o, sk) is a vector, the solution to

problem (20) is equivalent to searching for the smallest ele-
ment in the vector, i.e., mini [

∑
a∈MA(sk)

πa(sk)Qk(a, o, sk)]i.
Thereafter, the matrix game (19) can be reformulated as

max
πA(sk)

min
i

⎡

⎣
∑

a∈MA(sk)

πa(sk)Q
k(a, o, sk)

⎤

⎦

i

. (21)

Next, we define x = mini [
∑

a∈MA(sk)
πa(sk)Qk(a, o, sk)]i

and we have that [πa(sk)Qk(a, o, sk)]i ≥ x. Therefore,
problem (19) can be further rewritten as

max
πA(sk)

x

s.t.

⎡

⎣
∑

a∈MA(sk)

πa(sk)Q
k(a, o, sk)

⎤

⎦

i

≥ x (22)

∑

a∈MA(sk)

πa(sk) = 1 (23)

πa(sk) ≥ 0 ∀a ∈MA(sk). (24)

Finally, we can transform this to a linear programming (LP)
problem by viewing x as another variable

max
π ′

0T
augπ

′

s.t. Q′π ′ ≤ 0 (25)∑

a∈MA(sk)

πa(sk) = 1 (26)

πa(sk) ≥ 0 ∀a ∈MA(sk) (27)

where π ′ = [πa(sk), x]T , Q′ = ([01] − [Qk(a, o, sk)0]).
0T

aug = [0T1] is used to augment the original variable vec-
tor πa(sk) by viewing x as another variable so that we can
transform the problem into the standard form of an LP.
Because (25) is an LP, we can find the optimal solution

of the matrix game. Furthermore, as we optimally solve the
subproblem, our algorithm converges to the Nash equilibrium
of the game, which is proved in the next section.

C. Proof of the Nash Equilibrium

In what follows, we prove that our proposed algorithm con-
verges to the Nash equilibrium in the formulated zero-sum
stochastic game. The general idea is that, we first prove the
convergence of our algorithm, then prove that the obtained
result is the Nash equilibrium of the game as defined in
Section IV-A.

Before we prove the convergence of the proposed algorithm,
we have the following assumptions and lemma [40].

Assumption 1: Every state and action have been visited
infinitely often.

Assumption 2: The learning rate, α(k), satisfies the follow-
ing conditions.

1) 1 < α(k) < 1.
2)

∑∞
k=0 (α(k))2 <∞.

Lemma 1 (Conditional Averaging Lemma): Under
Assumptions 1 and 2, the process V(k + 1) =
(1 − α(k))V(k) + α(k)ω(k) converge to E(ω|h(k), α(k)),
where h(k) is the history at time stamp k.

Then, we arrive at a theorem for the convergence of our
algorithm.

Theorem 1: In the proposed Algorithm 1, for any state s ∈
S , the attacker’s and the system operator’s policies, i.e., πA(s)
and πO(s), converge to the Nash equilibrium point.

Proof: In Algorithm 1, we have that the decaying learn-
ing rate α(k) is equal to (1/k + 1). Therefore, we can see
that 0 < α(k) < 1, and

∑∞
k=1 (α(k))2 = ∑∞k=1 (1/k + 1)2 <∑∞

k=1 (1/k + 1)1/k)) =∑∞k=1 (1/k − 1/k + 1) <∞.
For the attacker, by substituting (18) into (14), we get that

for any s ∈ S

Vk
A(s) = max

πA(s)
min
πO(s)

∑

a∈MA(s)

∑

o∈MO(s)

πa(s)

·
[
(1− α(k))× Qk−1

A (a, o, s)+ α(k)

·
(
U(a, o, s)+ γ Vk−1

A

(
s′
))]× πo(s)

= (1− α(k))Vk−1
A (s)+ α(k) max

πA(s)
min
πO(s)

∑

a∈MA(s)

×
∑

o∈MO(s)

πa(s)
(
U(a, o, s)+ γ Vk−1

A

(
s′
))

πo(s).

Define a mapping function Tk as

TkVk
A(s) = Es′

⎡

⎣max
πA(s)

min
πO(s)

∑

a∈MA(s)

∑

o∈MO(s)

πa(s)

×
(
U(a, o, s)+ γ Vk−1

A

(
s′
))

πo(s)

⎤

⎦.

According to the conditional averaging lemma, we can know
that as the iterations in Algorithm 1 continue, Vk

A(s) converges
to TkVk

A(s).
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(a) (b)

(c)

Fig. 2. IEEE standard bus systems. IEEE (a) 9-bus system, (b) 30-bus system, and (c) 118-bus system.

Next, we show that TkVk
A(s) converges to the optimal value.

Specifically, we can rewrite TkVk
A(s) into

TkVk
A(s) = max

πA(s)
min
πO(s)

∑

a∈MA(s)

∑

o∈MO(s)

πa(s)

×
∑

s′∈S
T
(
a, o, s, s′

)(U(a, o, s)+ γ Vk−1
A

(
s′
))

× πo(s)

= max
πA(s)

min
πO(s)

∑

a∈MA(s)

∑

o∈MO(s)

πa(s)

×
(

U(a, o, s)+ γ
∑

s′∈S
Vk−1

A

(
s′
)
T
(
a, o, s, s′

)
)

× πo(s).

We define another mapping function Zk−1 as

Zk−1Vk−1
A (s) = πa(s)

(

U(a, o, s)+ γ
∑

s′∈S
Vk−1

A

(
s′
)

× T
(
a, o, s, s′

)
)

πo(s).

Zk−1 has been proved to be a contraction mapping in [41].
Therefore, TkVk

A(s) is a contraction mapping as well.
Thus, we have

Tk
(

Vk
A

)∗
(s) =

∑

a∈MA(s)

∑

o∈MO(s)

π∗a (s)

·
(

U(a, o, s)+ γ
∑

s′∈S
Vk−1

A

(
s′
)
T
(
a, o, s, s′

)
)

× π∗o (s)

=
(

Vk
A

)∗
(s)

which means that (Vk
A)∗(s) is the fixed point of Tk. According

to [40, Th. 1], Vk
A(s) converges to (Vk

A)∗(s), i.e., V∗(s), with
Probability 1.

Similarly, we can prove that Vk
O(s) converges to V∗(s) with

Probability 1 as well. Thus, this theorem directly follows.

V. SIMULATION RESULTS

In this section, we conduct extensive simulations to demon-
strate the efficacy and efficiency of the proposed scheme. We
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(a) (b)

(c) (d)

Fig. 3. Learning curves of the attacker and the system operator in the
IEEE 9-bus system. (a) Attacker’s strategy on line 7 at state 0. (b) System
operator’s strategy on line 7 at state 0. (c) Attacker’s strategy on line 3 at
state 7. (d) System operator’s strategy on line 7 at state 7.

first demonstrate the convergence of our proposed Q-CFA
algorithm in different systems. Then, we analyze the system
operator’s optimal strategies in different scenarios. Finally, we
compare the system operator’s expected long-term cost in our
scheme with that in other existing schemes.

A. Convergence of Q-CFA

We first study the convergence of the proposed Q-CFA algo-
rithm using the IEEE standard 9-bus, 30-bus, and 118-bus
systems, respectively, and the MATPOWER toolbox [42]. As
IEEE 118-bus test system does not include flow limits, we
employ the flow limits in [43, Table 3] (the transmission line
data). In Fig. 2 we show the configuration of standard IEEE
bus systems used in our experiments. To initialize the simula-
tion, we set the transition probabilities puw = 0.5, puwr = 0.3,
pwu = 0.5, and puwa = 0.3, the discounting factor γ = 0.3
and the exploration probability pexp = 0.6. For illustrative
purposes, we consider that the resources of each player are
normalized to one, particularly, each player can affect one
transmission line in one time slot. Because each transmission
line is of different importance to the entire system, we set dif-
ferent load shedding cost for each line. Specifically, we define
the load shedding cost as a linear function of the amount of
shed loads on line l and is given by

ul(d̂l) = cld̂l (28)

where cl is a given positive constant for line l. We conduct
experiments on a desktop with a 3.41 GHz i7-6700 CPU,
16-GB RAM and a 1-TB hard disk drive. To demonstrate the
convergence of our proposed Q-CFA, we show in Figs. 3–5
the learning curves of the system operator’s and the attacker’s
strategies at certain states in the IEEE 9-bus, 30-bus, and
118-bus systems, respectively. For instance, lines 3 and 7 are
the most important lines in the IEEE 9-bus system, which
become the main targets in the players’ optimal strategies as
shown in Fig. 3. In particular, the attacker and the system
operator tend to attack and defend, respectively, the transmis-
sion line 7 when the game starts. It indicates that when all

(a) (b)

(c) (d)

Fig. 4. Learning curves of the attacker and the system operator in the
IEEE 30-bus system. (a) Attacker’s strategy on line 27 at state 0. (b) System
operator’s strategy on line 29 at state 0. (c) Attacker’s strategy on line 16 at
state 27. (d) System operator’s strategy on line 27 at state 27.

(a) (b)

(c) (d)

Fig. 5. Learning curves of the attacker and the system operator in the
IEEE 118-bus system. (a) Attacker’s strategy on line 9 at state 0. (b) System
operator’s strategy on line 7 at state 0. (c) Attacker’s strategy on line 8 at
state 9. (d) System operator’s strategy on line 9 at state 9.

the transmission lines are well functioning, the most critical
line in the IEEE 9-bus system is the line 7. As the iteration
goes by, both attacker and defender’s strategies converge and
the obtained strategies are stationary, which means the mixed
strategies do not change over time. When the state of the game
transits to state 7 where line 7 is malfunctioning, as shown
in Fig. 3(c) and 3(d), we can see that the system operator is
more likely to repair line 7 but the attacker more likely turns to
attack line 3. We can also observe similar results in the IEEE
30-bus and 118-bus systems. Noticeably, from Figs. 3–5 we
can find that both players’ strategies converge within 200, 250,
and 400 iterations in the IEEE 9-bus, 30-bus, and 118-bus
systems, respectively. Since we have proved that the con-
verged strategies are the Nash equilibrium points, the results
in the simulation are optimal under dynamic environments.
Moreover, from a game-theoretic perspective, the strategies
obtained by our proposed algorithm will serve as guidance for
the system operator to deploy either reinforcement or repair on
system components in different system configuration under the
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(a) (b)

Fig. 6. Strategy analysis for stochastic game. (a) Performance analysis with
regard to different γ . (b) Convergence analysis with regard to different γ .

condition that the attacker targets the most critical system com-
ponents. By doing so, the system operator can reduce the risk
of having cascading failures, and hence the expected long-term
costs.

Besides, the computing time of our proposed algorithm is
dominated by the solution of an LP, i.e., (25)–(27), at every
iteration. For example, one iteration of our algorithm for the
118-bus system takes 2.72 s of which 2.57 s are due to the
solution of the LP. Therefore, the computational complexity
of our algorithm depends on the size of the LP and the
number of iterations. Specifically, according to (25)–(27), the
number of variables and constraints in the LP, depends on
the number of actions, which grows linearly with the number
of lines in the system. By employing the simplex algorithm,
the complexity of solving one LP is a polynomial function
of the number of lines in the system. Moreover, according to
our simulation results, the number of iterations of our algo-
rithm also grows linearly with the number of lines in the
system. Therefore, the overall computational complexity of
our algorithm is a polynomial function of the number of lines
in the system. Moreover, in Figs. 3–5, the number of itera-
tions needed for convergence does not linearly increase as the
number of system buses increases, which makes our algorithm
scalable even for large systems.

B. Strategy Analysis

Next, we analyze the system operator’s optimal strategies
in the stochastic game when the discount factor γ varies,
with γ being equal to 0, 0.3, and 0.8. Recall that γ ∈ [0, 1)

represents the impact that current decisions can have on the
long-term reward. Particularly, when γ equals 0, the game
becomes a static game. When γ is larger than 0, a smaller
value of γ emphasizes more on the immediate rewards and
a larger γ gives a higher weight to the future rewards. In
Fig. 6(a), compared with the results in the static game where
γ = 0, the performance in the stochastic games where γ > 0
is much better. This is because in the stochastic games, players
not only care about current rewards, but also take the future
rewards into consideration. By considering both current and
future rewards, players are able to obtain optimal expected
long-term rewards. In addition, we can see that the higher γ

is, the lower expected long-term load shedding cost the system
operator can achieve. This is because when γ increases, the
system operator places more emphasis on the future states and
can better react to the dynamic environments, which results
in more savings in the long-term cost. On the other hand,
Fig. 6(a) and 6(b) together demonstrate the tradeoff between

Fig. 7. Performance comparison among three strategies.

performance and computational cost. As shown in Fig. 6(b),
the number of iterations needed for convergence increases as
γ increases. This is because when we emphasize more on
the future rewards, it takes more iterations to search for the
optimal solution.

C. Performance Comparison

Finally, from the system operator’s perspective, we com-
pare the performance of the optimal strategies obtained by
our Q-CFA algorithm with that of two other strategies, i.e., the
fixed strategy and the myopic learning strategy. In particular,
in the fixed strategy, the system operator will draw an action
o uniformly from the available action space, i.e., MO(s), for
each state s. In the myopic learning strategy where the game
is a static game (γ = 0), the system operator only consid-
ers immediate rewards and ignores the impact of the current
action on future rewards. Note that it is of paramount impor-
tance to select initiating events in each algorithm because it
allows the attacker to determine if the initial event can cause
a cascading failure. In the three benchmark algorithms, the
selections of “important line” are different. In particular, our
proposed scheme optimizes the expected long-term rewards, so
the selection of initiating events takes the opponent’s strategy
and the dynamic environments into consideration. However,
as the myopic strategy is a static-game strategy, selection of
initiating event only considers the opponent’s strategy in cur-
rent state and the strategy can be explained as trying to launch
a one-time attack to cause cascading failure and achieve the
maximum immediate reward. On the other hand, the fixed
strategy is a uniform strategy for comparison. So the selec-
tion of initial event is uniformly distributed. We compare
the optimal expected long-term cost in these three strategies
in Fig. 7.

We can find that the optimal costs obtained by our proposed
Q-CFA and the myopic learning strategy are much lower than
that obtained by the fixed strategy. This is because both of our
proposed Q-CFA and the myopic learning strategy try to min-
imize the attacker’s maximal reward, while the fixed strategy
only uniformly chooses actions from the available action set
without taking the opponent’s possible strategies into consider-
ation. In addition, because our Q-CFA algorithm optimizes the
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expected long-term reward while the myopic learning strategy
only focuses on optimizing the strategies at the current state,
our scheme outperforms the myopic learning strategy in the
long run. Therefore, as a power system operator, adopting our
proposed Q-CFA algorithm to defend the power system can
both adapt to the dynamic state changes and attacker’s intel-
ligent strategies, which results in the best performance in the
long run.

VI. CONCLUSION

The IoT technologies have brought both new features and
significant security challenges to power systems. In this paper,
we have investigated CFAs in power systems. Specifically,
we have formulated a zero-sum stochastic game to analyze
the interactions between an attacker and a system operator
in dynamic environments for power systems. This problem is
very complex and computationally intensive. Different from
the previous work where complete enumeration of the system
states is required, making the algorithms computationally
intractable for large-scale power system applications, we pro-
pose an efficient Q-CFA learning algorithm that only searches
certain related possible actions for each player in the game,
making the scheme scalable with fast convergence. We have
also theoretically proven that the proposed algorithm achieves
the Nash equilibrium. Moreover, considering that real-time
statistics and sensitive data like system transition probabili-
ties may not be accessible in practice, which unfortunately
is an indispensable assumption in previous algorithms, our
scheme works efficiently without requiring a priori knowledge
of the system transition states. Simulation results show that by
considering the system dynamics and the opponent’s possible
strategies, the optimal policy obtained by our proposed Q-CFA
algorithm can achieve much better performance compared to
several benchmark schemes.
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