
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS/SUPPLEMENT, VOL. 31, NO. 9, SEPTEMBER 2013 257

Privacy-Preserving Energy Theft Detection in
Smart Grids: A P2P Computing Approach

Sergio Salinas, Student Member, IEEE, Ming Li, Student Member, IEEE, and Pan Li, Member, IEEE

Abstract—In the U.S., energy theft causes about six billion
dollar losses to utility companies (UCs) every year. With the
smart grid being proposed to modernize current power grids,
energy theft may become an even more serious problem since
the “smart meters” used in smart grids are vulnerable to more
types of attacks compared to traditional mechanical meters.
Therefore, it is important to develop efficient and reliable
methods to identify illegal users who are committing energy
theft. Although some schemes have been proposed for the UCs to
detect energy theft in power grids, they all require users to send
their private information, e.g., load profiles or meter readings
at certain times, to the UCs, which invades users’ privacy and
raises serious concerns about privacy, safety, etc. To the best of
our knowledge, we are the first to investigate the energy theft
detection problem considering users’ privacy issues. Specifically,
in this paper, utilizing peer-to-peer (P2P) computing, we propose
three distributed algorithms to solve a linear system of equations
(LSE) for users’ “honesty coefficients”. Extensive simulations are
carried out and the results show that the proposed algorithms
can efficiently and successfully identify the fraudulent users in
the system.

Index Terms—Energy theft detection, smart grids, privacy, P2P
computing.

I. INTRODUCTION

ENERGY theft has been a notorious problem in traditional
power systems. The utility companies (UCs) in the U.S.

lose approximately six billion dollars every year due to this
problem [2]. Recently, the smart grid has been proposed as
a new type of electrical grid to modernize current power
grids to efficiently deliver reliable, economic, and sustainable
electricity services. One of the most salient features of smart
grids is the replacement of conventional analog mechanical
meters by digital meters, usually called “smart meters”. In
addition to recording users’ energy usage, due to their com-
munication capability, smart meters can provide a two-way
communication path between UCs and energy users, which
can facilitate efficient power system control and monitoring.
However, compared to mechanical meters which can only
be physically tampered, smart meters are vulnerable to more
types of attacks (e.g., network attack), which may make energy
theft easier to commit and hence an even more serious problem
in smart grids.

Some research has been conducted to detect energy theft
in traditional power grids. Nizar et al. [3] employ a data

Manuscript received February 28, 2012; revised July 14, 2012.
This work was supported by the U.S. National Science Foundation under

grants CNS-1149786 (CAREER Award), ECCS-1128768, and CNS-1147851.
An earlier version of this paper was presented at IEEE SECON 2012 [1].

The authors are with the Department of Electrical and Computer Engi-
neering, Mississippi State University, Mississippi State, MS, 39762 (e-mail:
{sas573@, ml845@, li@ece.}msstate.edu).

Digital Object Identifier 10.1109/JSAC.2013.SUP.0513023

mining technique known as Extreme Learning Machine (ELM)
to classify users’ electricity consumption patterns or load-
profiles. By comparing the results to a database of users’
load profiles, the proposed algorithm yields a list of users
who could be stealing energy, which we call “energy thieves”.
Nagi et al. [4] propose a similar approach but choose to
use genetic algorithms and Support Vector Machine (SVM)
instead of ELM. Depuru et al. [5] develop another data mining
based scheme utilizing SVM as well. Unfortunately, these
techniques cannot sort out the energy thieves with absolute
certainty. In contrast, Bandim et al. [6] propose a central
observer to measure the total energy consumption of a small
number of users, and are able to identify all the energy thieves
by comparing the total energy consumption with the reported
energy consumption from the users.

Notice that in all the above works, the UC has to know some
of users’ private information, e.g., users’ load profiles or meter
readings at certain times, in order to find the energy thieves.
However, the disclosure of such information would violate
users’ privacy and raise concerns about privacy, safety, etc. In
particular, users’ private information may be sold to interested
third-parties. Insurance companies may buy load-profiles from
the UC to make premium adjustments on the users’ policies.
For example, they could find electricity consumption patterns
that increase the risk of fire in a property and increase
insurance premiums accordingly. Marketing companies may
also be interested in this data to identify potential customers.
Moreover, criminals may utilize such private information to
commit crimes. For instance, robbers may analyze the energy
consumption pattern of potential victims to deduce their daily
behavior. They can even know if a robbery alarm has been
set at their target location [7]. Many researchers, such as
Quinn [8], have realized how high resolution electricity usage
information can be used to reconstruct many intimate details of
a consumer’s daily life and invade his/her privacy, and thus call
for state legislators and public utility commissions to address
this new privacy threat [9].

Unfortunately, there is currently a lack of research on
privacy-preserving energy theft detection in smart grids. Li
et al. [10] design a privacy-preserving aggregation protocol to
collect the total energy consumption of a group of users at a
distribution station in smart grids, which shares a similar idea
to those works like [11] on privacy-preserving data aggrega-
tion in wireless sensor networks. However, such algorithms
cannot be used to detect energy theft in smart grids. To the
best of our knowledge, we are the first to investigate the energy
theft detection problem considering users’ privacy issues.

In particular, intuitively and as in previous works, we

0733-8716/13/$31.00 c© 2013 IEEE

258 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS/SUPPLEMENT, VOL. 31, NO. 9, SEPTEMBER 2013

need to know about a user’s electric energy consumption
in order to tell whether he/she is committing fraud or not,
which, however, results in the reveal of the user’s privacy.
Therefore, energy theft detection and users’ privacy seem
to be two conflicting problems. How to detect energy theft
while preserving users’ privacy is a challenging problem. In
this paper, utilizing peer-to-peer (P2P) computing [12], we
propose three distributed algorithms to solve a linear system
of equations (LSE) for the users’ “honesty coefficients”. If a
user’s honesty coefficient is equal to 1, this user is honest.
Otherwise, if the honesty coefficient is larger than 1, then
this user has reported less consumed energy and hence is
committing fraud. The users’ privacy can be preserved because
they do not need to disclose any of their energy consumption
data to others.

More specifically, we propose to take advantage of dis-
tributed LU and QR decompositions to solve our LSE. Al-
though some distributed algorithms for LU or QR decompo-
sition [13] have been proposed in the literature, e.g., [14]–
[17], they cannot preserve each node’s private information.
In this paper, we first develop a distributed privacy-preserving
energy theft detection algorithm leveraging LU decomposition,
called LUD. We find that LUD can successfully identify all the
energy thieves in a small size network but may be unstable in
large networks1. Then, we design another algorithm based on
LU decomposition with partial pivoting, called LUDP, which
can find all the energy thieves even in large-size networks. We
also propose a third algorithm by QR decomposition, called
QRD, which also works well in large-size networks. Moreover,
the LUD, LUDP, and QRD algorithms are proposed in the case
that users commit energy theft at a constant rate, i.e., with
constant honesty coefficients. We further propose adaptive
LUD/LUDP/QRD algorithms to account for the scenarios
where the users have variable honesty coefficients.

In addition, after presenting the proposed algorithms, we
analyze the computational and communication complexities of
the two stable algorithms, i.e., LUDP and QRD. We find that
LUDP algorithm has a computational complexity of Θ(2n3/3)
and a communication complexity of Θ(2n3/3), and the QRD
algorithm has a computational complexity of Θ(2n3) and
a communication complexity of Θ(5n3/6). In other words,
the QRD algorithm has higher computational complexity and
higher communication complexity compared with the LUDP
algorithm.

The rest of this paper is organized as follows. Section II
introduces network model. Section III presents the linear
system of equations for energy theft detection. Section IV
details the proposed distributed algorithms for solving the
LSE. Computational and communication complexity analysis
is provided in Section V. Simulation results are shown in
Section VI. Finally, we conclude this paper in Section VII.

II. NETWORK MODEL

In this section, we first present the network architecture
considered in this paper, and then briefly introduce the possible
attacks on smart meters (SMs) by energy thieves, and possible
implementations of the proposed algorithms on the SMs.

1This is due to the rounding errors in LU decomposition.

Fig. 1. A typical architecture of Neighborhood Area Network (NAN).

A. Network Architecture

In the smart grid, communications and electricity networks
overlay each other. Utility companies (UCs) deploy control
centers (CCs) to monitor their distribution stations (DSs) and
distribution networks, and deploy SMs at users’s premises
to measure their individual energy consumption. Since a CC
is usually physically far away from users, a communication
entity that can facilitate the communication between users
and the CC is necessary. To this end, an access point, called
“the collector”, is placed at each of the serviced areas. One
SM is installed at each collector to measure the total energy
consumed by the serviced area.

A typical network architecture is depicted in Fig. 1. In a
serviced area, the users’ SMs together with the collector form
a Neighborhood Area Network (NAN). The communications
among SMs and between SMs and the collector are carried
out wirelessly due to SMs’ communication capability, while
the communications among the CC, the DS, and the collector
are conducted via wired medium.

B. Attacks on Smart Meters

Smart meters can provide the users with a plethora of
unique features. For example, users can be provided with
real time electricity pricing and thus determine when to turn
on/off some of their electrical devices. Smart meters can also
send incentive-based load reduction signals to users so that
they can be compensated for their efforts to save energy.
However, compared to mechanical meters which can only
be physically tampered, smart meters are vulnerable to more
types of attacks, which may make energy theft easier to
commit and hence an even more serious problem in smart
grids.

1) Physical Attack: Conventional mechanical meters and
SMs are both vulnerable to this type of attack. It refers to the
scenarios where illegal users physically modify their meters
to record wrong values that will lower their electric bills.
Physical attack to electricity meters includes meter reversing,
tampering with strong magnets, pressure coil damaging, sup-
ply voltage regulation, and even disconnecting the meters. The
readers are referred to [18] for a more extensive description
on physical attacks.

One way to detect physical attacks is to visually check the
meter for any broken seals or other signs of damage. However,
this detection method is both resource and time consuming
because employees of the UC have to visit the users’ premises

SUPPLEMENT: EMERGING TECHNOLOGIES IN COMMUNICATIONS — PART 1 259

to verify the meters’ integrity. Moreover, signs of damage may
not be obvious and seals may be replaced.

2) Network Attack: An illegal user can operate a malicious
node to perform network attack. For example, an illegal user
may impersonate his/her own SM and make it record lower
energy consumption. Network attack may be easier to launch
and more difficult to detect.

In addition to attacking his/her smart meter, a user may
also get some energy that is not being measured, e.g., through
a conductor that bypasses the meter. In this case, the smart
meter does not correctly measure the energy consumption of
the user and hence can also be considered as being attacked.
The proposed algorithms can address all these problems.

C. Possible Implementation of the Proposed Algorithms

The proposed algorithms can be implemented in the
firmware of the smart meters. Many mechanisms have been
proposed to protect the firmware of embedded systems, such
as passwords, centralized intrusion detection, local intrusion
detection, and intrusion self-reporting. For example, LeMay
et al. [19] develop a remote attestation mechanism that allows
centralized intrusion detection of all SMs in a neighborhood. If
any intrusion to the firmware is detected by the UC, the suspect
SMs cannot be trusted and must be inspected. Consequently,
SMs can be trusted in correctly executing the proposed privacy
preserving energy theft detection algorithms2.

III. A LINEAR SYSTEM OF EQUATIONS FOR ENERGY

THEFT DETECTION

In this section, we present a mathematical model for energy
theft detection. As mentioned before, we assume that an SM is
installed at the collector such that the collector can know the
total energy consumption of the users in the service area. We
also assume that the UC installs an SM at each of the users’
premises, which is capable of recording energy consumption
at any time instant.

Consider a NAN of n users. We define a sampling period
denoted by SP . Then, after every sampling period, all the n+1
SMs will record their energy consumption in the past sampling
period. We denote such energy consumption recorded by user
j (1 ≤ j ≤ n) and by the collector at time ti, by pti,j and Pti ,
respectively. We further define an honesty coefficient, denoted
by kj where kj > 0, for each user j. Thus, kj · pti,j gives the
real energy consumption of user j from time instant ti − SP
to time instant ti. Since the sum of all users’ real energy
consumption in the past sampling period must be equal to the
total energy consumption of the neighborhood measured at the
collector at time ti, we have

k1pti,1 + k2pti,2 + ...+ knpti,n = Pti (1)

Our objective is to find all the kj ’s. Obviously, 1) if kj = 1,
then user j is honest and did not steal energy; 2) if kj > 1,
then user j recorded less energy than what he/she consumes
and hence is an energy thief; and 3) if 0 < kj < 1, then user j
recorded more than what he/she consumes, which means that
his/her smart meter may be malfunctioning.

2Note that although we assume a secure firmware for SMs, the upper layer
software for SMs can still be compromised.

In particular, with n linear equations, we can have a linear
system of equations (LSE) as follows:

k1pt1,1 + k2pt1,2 + ...+ knpt1,n = Pt1

...

k1ptn,1 + k2ptn,2 + ...+ knptn,n = Ptn

which can also be formulated in matrix form:

Pk = P . (2)

The jth column of P represents the data recorded and stored
by user j or SMj , while the ith row of P represents the data
recorded by all the users at ti. The collector can choose n time
instances when Pti ’s all have different values. In this case,
it is highly likely that the LSE is independent and the rows
of P are independent as well, especially when n is large3.
Thus, the above LSE only has a single unique solution, i.e.,
the feasible solution kj = pti,j/pti,j where pti,j is the real
energy consumption of user j from time instant ti − SP to
time instant ti.

Note that our model does not take into account energy
dissipation, or technical losses (TLs), in the power system,
which are mainly caused by the intrinsic inefficiencies in
transformers and low voltage power lines. However, TLs can
be calculated without using consumers’ energy measurements.
For example, Oliveira et al. [20] describe how to calculate
TLs using measurements at the distribution station and the
knowledge of the distribution network which does not need to
compromise users’ privacy. Thus, once the technical losses are
calculated by the collector, the collector can adjust the model
by subtracting the TLs from vector P .

Besides, note that finding the honesty coefficient vector, k,
is delay tolerant. In other words, k is not required to be found
and transmitted to the collector in real time. This gives priority
to other real time traffic in the NAN, such as electricity pricing,
incentive-based load reduction signals, and emergency load
reduction signals.

IV. FINDING HONESTY COEFFICIENTS BY P2P
COMPUTING

In what follows, based on P2P computing (or dis-
tributed/collaborative computing), we propose three algo-
rithms that can solve the linear system of equations in (2)
while preserving the users’ privacy. The challenge is that each
smart meter SMj needs to find its own honesty coefficient
kj without knowing any of the other smart meters’ recorded
energy consumption data pti,l’s, where 1 ≤ i ≤ n and j �= l.

Specifically, we first develop an LU decomposition based
approach, called LUD, to detect the energy thieves while
preserving users’ privacy. We notice that in its original form,
LUD may not be numerically stable in large size networks.
The reason is that the inaccuracies involved when using finite
resolution numbers may lead to solutions with significant
errors when n is large. Therefore, after proposing the LUD
algorithm, we design another algorithm to achieve numerical

3Besides, note that usually there are always some appliances running at
users’ premises, such as refrigerators and air conditioners, whose working
powers are in practice dynamic with some fluctuations instead of constants.

260 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS/SUPPLEMENT, VOL. 31, NO. 9, SEPTEMBER 2013

stability by exchanging rows of the matrix P during LU
decomposition, i.e., LUD with partial pivoting (LUDP). After
that, we also propose a QR Decomposition based algorithm,
called QRD, to perform stable P2P computing in large-scale
networks to find the energy thieves.

In the following, we detail these three algorithms, respec-
tively, when the honesty coefficient vector, k, is a constant,
and then discuss the cases where k changes with time.

A. The LUD Algorithm

We first describe the LUD algorithm as follows, which is
based on distributed LU decomposition. The LU decomposi-
tion is to factorize the energy consumption data matrix P into
two triangular matrices: a lower triangular matrix L and an
upper triangular matrix U , i.e., P = LU .

The elements of upper triangular matrix U can be calculated
as follows:
ui,j = 0, i > j

u1,j = pt1,j , j = 1, 2, ..., n

ur,j = ptr,j −
r−1∑
k=1

lr,kuk,j , r = 2, ..., n, j = r, ..., n

(3)

where pti,j is the ith element of column j in matrix P .
Besides, the elements of lower triangular matrix L can be
obtained by

li,j = 0, i < j

li,1 =
pti,1
pt1,1

, i = 1, 2, ..., n

li,q =

pti,q −
q−1∑
k=1

li,kuk,q

uq,q
, q = 2, ..., n, i = q, .., n

(4)

Note that the diagonal elements of L are equal to 1. This
guarantees that the decomposition of P is unique.

After matrices L and U are collaboratively computed, the
following system can be solved:

Ly = P , (5)

Uk = y. (6)

In particular, to solve for y, each SMj−1 will calculate yj as
follows, i.e., y1 = Pt1 , and

yj = Ptj −
j−1∑
q=1

lj,qyq, j = 2, ..., n. (7)

The required values for this computation are the elements of
y with index less than j and row j of L. Finally, Each SMj

solves for kj using backward substitution, i.e., kn = yn

un,n
, and

kj =

yj −
n∑

p=j+1

uj,pkp

uj,j
j = 1, ..., n− 1. (8)

Therefore, our LUD algorithm is composed of two parts:
Distributed LU Decomposition and Backward Substitution,
which are detailed in Procedure 1 and Procedure 2, respec-
tively. Besides, before the algorithm can begin, the collector
must number all the SMs from 1 to n, and the index number

of any SM is only known to the SM itself and the collector.
The collector also transmits Ptj+1 to each SMj to allow the
SMs to collaboratively compute L, U , and y. We denote the
smart meter at the collector as SM0. All SMs start running
Procedure 1 when the collector requests them to by sending
a control message.

Procedure 1 Distributed LU Decomposition

Input: j → SMj , Ptj+1 → SMj

1: if j = 0 or SMj receives packets from SMj−1 then
2: if j = 0 then
3: Compute y1 using (7)
4: Transmit y1 only to SM1

5: end if
6: if 1 ≤ j ≤ n− 1 then
7: for q = 1 to j do
8: Compute uq,j using (3)
9: end for

10: for q = j + 1 to n do
11: Compute lq,j using equation (4)
12: end for
13: Compute yj+1 using (7)
14: Transmit columns 1, 2, ..., j of L and all known

elements of y1, ..., yj+1 only to SMj+1

15: end if
16: if j = n then
17: Notify the collector that L, U , and y are avail-

able
18: end if
19: end if

Specifically, SM0 first calculates y1 = Pt1 , and then
transmits it to SM1. SM0 does not need to compute any
element of L or U . After SM1 receives y1, it computes
column 1 of U , column 1 of L, and y2. Then, SM1 transmits
column 1 of L, y1, and y2 to SM2. SMj (1 < j < n), receives
y1 through yj and columns 1 through j−1 of L from SMj−1,
based on which it calculates column j of U , column j of L,
and yj+1. After that, SMj transmits columns 1 through j of L
and y1 through yj+1 to SMj+1. Finally, SMn receives yn and
columns 1 through n−1 from SMn−1, calculates column n of
U and column n of L, and notifies the collector that the Back
Substitution procedure, i.e., Procedure 2, can start. Notice that
each SMj (j > 0) is responsible for computing column j of
U , column j of L, and yj+1 (1 ≤ j < n).

After Procedure 1 ends, SMj (1 ≤ j ≤ n) has obtained the
jth column of U and yj . The collector then instructs all the
smart meters to run Procedure 2 to solve for their own honesty
coefficients according to (7), starting from SMn. In particular,
SMn transmits un−1,nkn, which is needed by SMn−1 to solve
for kn−1, along with un−2,nkn, ..., u1,nkn, needed by SMn−2,
..., SM1, respectively, to SMn−1. Similarly, SMj (1 < j < n)
receives

∑n
q=j+1 uj,qkq from SMj+1 and solves for kj ,

and then transmits
∑n

q=j uj−1,qkq along with u1,jkj , ...,
uj−2,jkj , u1,j+1kj+1, ..., uj−2,j+1kj+1, ..., u1,nkn...uj−2,nkn
to SMj−1. Finally, SM1 receives

∑n
q=2 u1,qkq from SM2 and

solves for k1. Moreover, after obtaining its honesty coefficient,
each smart meter SMj encrypts kj using the collector’s public
key, resulting in E(kj), and then transmits E(kj) to the

SUPPLEMENT: EMERGING TECHNOLOGIES IN COMMUNICATIONS — PART 1 261

collector. When all the E(kj)’s have been reported to the
collector, the LSE can be successfully solved, and hence the
collector can decrypt all the elements of k and identify all the
fraudulent users.

Notice that in LUD, the collector does not know L or U ,
and hence cannot recover P . Moreover, from equation (8),
we can observe that SMj will need all the elements of U
in row j and kn, kn−1, ..., kj+1 in order to compute kj . If
such data are transmitted to SMj separately, an eavesdropper
would be able to figure out all the elements of U , except those
on the diagonal, by eavesdropping on all the transmissions in
the network. Since an eavesdropper is able to obtain L by
eavesdropping, too, it can figure out some elements of P (e.g.,
all the elements above the diagonal of P). To prevent this
from happening, as mentioned above and shown in Procedure
2, we transmit the multiplication of an element of U and
the corresponding honesty coefficient instead. Notice that in
this case an eavesdropper may be able to guess the energy
consumption of certain honest users (i.e., those whose honesty
coefficients are equal to 1) at certain times by assuming
k = 1. However, even so since the eavesdropper does not
know the mapping between smart meter indexes and users
(only the collector knows), it cannot really know any user’s
energy consumption data. Besides, the eavesdropper does
not know which users are honest anyway. In addition, to
defend against the case that the collector has the capability
of eavesdropping on all the transmissions in the network, we
can just enable each neighboring two smart meters, i.e., SMj

and SMj+1 where 1 ≤ j ≤ n − 1, to establish a symmetric
security key on their own to encrypt the data transmitted in
Procedure 2 (line 7 and line 8). In so doing, no user’s private
data will be revealed to or recovered by anyone else.

Procedure 2 Backward Substitution
1: if j = n or SMj receives packet from SMj+1 then
2: Compute kj as described in (8) using sj+1 if neces-

sary
3: Compute E(kj) and transmit E(kj) to the collector
4: Compute uq,jkj for q = j − 1, j − 2, ..., 1
5: if j �= 1 then
6: Compute sj =

∑n
q=j uj−1,qkq

7: Transmit sj to SMj−1

8: Transmit u1,jkj , ..., uj−2,jkj , u1,j+1kj+1, ...,
uj−2,j+1kj+1, ..., u1,nkn, ..., uj−2,nkn to
SMj−1

9: end if
10: end if

B. The LUDP Algorithm

As mentioned before, LUD may not be numerically stable
when n is large. Here, we propose another algorithm, i.e.,
LUD with partial pivoting (LUDP), to address the stability
problem. Partial pivoting is to interchange rows of the matrix
P in order to place the element that has the greatest absolute
value in each column in the diagonal position of the matrix.
Thus, LUDP decomposition has the following form, EP =
LU , where E is the permutation matrix.

The LUDP algorithm consists of three procedures: LU
Decomposition with Partial Pivoting, Forward Substitution,

Procedure 3 LU Decomposition with Partial Pivoting
Input: j → SMj

1: U = P
2: if received packet from SMj−1 or j = 1 then
3: if j �= 1 then
4: Receive columns 1, 2, ..., j − 1 of L and pivot

indexes
5: for f = 1 to j − 1 do
6: Update column j of U by interchanging the

jth element of row f with the jthe element
of the pivot row of SMf

7: for r = f + 1 to n do
8: ur,j = ur,j − lr,fuf,j

9: end for
10: end for
11: end if
12: Compute lj,j = 1
13: if j �= n then
14: Determine pivot rows in column j of U
15: Interchange the jth element of row j with the

jth element of the pivot row in U and L
16: for r = j + 1 to n do
17: Compute lr,j =

ur,j

uj,j

18: Compute ur,j = 0
19: end for
20: Transmit columns 1, 2..., j of L and pivot row

indexes to SMj+1.
21: else
22: Notify the collector that L and U are available
23: Transmit all the n pivot row indexes to SM0

24: end if
25: end if

and Backward Substitution. Procedure 3 shows how LU
decomposition with partial pivoting works. Specifically, we
first let U = P . Then, SM1 finds the maximum element in
column 1 of U , lets the pivot index of column 1 be the row
this element is in, interchanges this element with the element
in row 1 if it is not, and updates the first column of U . SM1

also computes the first column of L, and transmits it together
with the pivot index of column 1 to SM2. Note that in LUDP,
we compute U and L in a different way from that in LUD,
as shown in Line 8 and Line 17 of Procedure 3, respectively,
which now allows partial pivoting [13]. After receiving the
data from SM1, SM2 repeats SM1’s row interchange, i.e.,
interchanging the element in column 2, SM1’s pivot index row
of U with the element in column 2, row 1 of U . Then, SM2

performs its own row interchange, which is to interchange the
maximum element in column 2 of U with the second element
in column 2 of U , lets the pivot index of column 2 be the row
this maximum element was in, and updates the second column
of U . After that, SM2 computes the second column of L, and
transmits the first two columns of L along with the pivot index
of SM1 and of SM2 to SM3. Finally, SMn receives columns
1 to n−1 of L and all the previous nodes’ pivot indexes from
SMn−1, repeats all the previous row interchanges, performs
its own row interchange, and calculates column n of U . Note
that lj,j = 1 for 1 ≤ j ≤ n.

262 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS/SUPPLEMENT, VOL. 31, NO. 9, SEPTEMBER 2013

Moreover, due to (2), we need make the same row inter-
changes for P as those for P . Thus, we let SMn send all
the n pivot row indexes to the collector SM0, which then
performs the same row interchanges for P . Now we can solve
for y and k according to (5) and (6), respectively. In particular,
since y is computed according to (7), y can only be computed
after Procedure 3 is finished, which is different from that in
LUD where y can be computed at the same time as L and
U . Therefore, we propose the Forward Substitution procedure
as shown in Procedure 4, to enable the smart meters to solve
for y in a distributed way. Forward Substitution calculates yj
according to (7), and works similar to Backward Substitution
except that it starts from SM1. At last, after y is available,
Back Substitution as described in Procedure 2 can be used to
solve for k.

Procedure 4 Forward Substitution
Input: j → SMj

1: if j = 0 or SMj receives packets from SMj−1 then
2: if j = 0 then
3: Compute y1 = Pt1 and transmit y1 to SM1

4: end if
5: if 1 ≤ j ≤ n− 1 then
6: Compute yj+1 as described in (7) using sj−1 if

necessary
7: Transmit yj+1 to SMj+1

8: Compute lq,jyj for q = j + 1, j + 2, ..., n

9: Compute sj =
∑j

q=1 lj+1,qyq
10: Transmit sj to SMj+1

11: Transmit lj+2,1y1, ..., ln,1y1, ..., lj+2,jyj , ...,
ln,jyj to SMj+1

12: end if
13: if j = n then
14: Notify the collector that y is available
15: end if
16: end if

Furthermore, the same as that in LUD, we can enable each
neighboring two smart meters, i.e., SMj and SMj+1 where
1 ≤ j ≤ n− 1, to establish a symmetric security key on their
own and encrypt the data transmitted in Procedure 2 (line 7
and line 8) to protect users’ privacy.

Compared to the LUD algorithm, LUDP takes more time to
complete. This is because in LUDP the forward substitution
to calculate y can only be carried out after L and U have
been obtained, while in LUD, y, L, and U can be obtained
at the same time. On the other hand, LUDP is numerically
stable while LUD is not.

C. The QRD Algorithm

Here, we present another privacy-preserving energy theft
detection algorithm, called QRD. In particular, by QR de-
composition, matrix P can be decomposed into an orthogonal
matrix Q and an upper triangular matrix R, i.e., P = QR,
where Q−1 = QT . Thus, we have Pk = QRk = P , which
yields a new system

Rk = QTP. (9)

The basic idea is to utilize distributed QR decomposition to
enable each smart meter to compute its own honesty coeffi-
cient without using other smart meters’ energy consumption
data.

We first present how to determine Q and R in the following.
In particular, QT is formed as the product of n(n−1)

2 plane
rotation matrices as follows:

QT = Gn,n−1(Gn−1,n−2Gn,n−2) · · · (G2,1 · · ·Gn,1).
(10)

Let P̂1,0 = P and

P̂i,j = (Gi,j · · ·Gn,j) · · · (G2,1 · · ·Gn,1)P̂1,0.

Then, P̂i,j = Gi,jP̂i+1,j when i < n and P̂i,j =
Gi,jP̂j,j−1 when i = n. Besides, when Gi,j multiplies
P̂i+1,j when i < n (or P̂j,j−1 when i = n) from the left, it
zeros element P̂i+1,j(i, j) when i < n (or P̂j,j−1(i, j) when
i = n), modifies rows i and i− 1 of P̂i+1,j (or P̂j,j−1), and
preserves previously introduced zeros4. Finally, QTP reduces
P into an upper triangular matrix R, i.e., P̂n,n−1 = R.

The two most common methods to find plane rotation matri-
ces (Gi,j’s) are Householder Rotations and Givens Rotations
(GR). In this paper we adopt the GR approach. The non-zero
elements of Gi+1,j are

gqq = 1, q �= i, j

gi,i = ci,j , gi+1,i+1 = ci,j , gi,i+1 = si,j , gi+1,i = −si,j
(11)

where ci,j and si,j are calculated as

p
′
i,j = (p2i,j + p2i+1,j)

1/2, ci,j =
pi,j
p

′
i,j

, si,j =
pi+1,j

p
′
i,j

. (12)

Note that for simplicity we use pi,j to denote the element in
ith row and jth column in the previously rotated matrix, i.e.,
P̂i+2,j when i < n− 1 and P̂j,j−1 when i = n− 1.

Besides, the elements of the matrix after rotation, i.e.,
P̂i+1,j , are

P̂i+1,j(i, r) = ci,jpi,r + si,jpi+1,r for r ≥ j

P̂i+1,j(i+ 1, j) = 0

P̂i+1,j(i+ 1, r) = −si,jpi,r + ci,jpi+1,r for r > j

(13)

We denote by Gi,j the set that contains ci,j and si,j , i.e.,
Gi,j = {ci,j, si,j}. From equation (12), we can observe that
the values needed by SMj to compute Gi,j reside in column
j. This allows SMj to find all its rotation matrices, i.e.,
Gj+1,j ,..., Gn,j , only using its locally stored and calculated
data. Moreover, (13) shows that SMr, when r > j, needs the
set Gi,j from SMj to update its own data, i.e., column r of the
rotated matrix P̂i+1,j . In addition, notice that each column j
(1 ≤ j ≤ n) has n− j elements that need to be converted to
zero in order to finally find R in (9). The set that contains all
the Gi,j’s which need to be calculated by SMj , denoted by
Bj , is thus Bj = {Gn−1,j,Gn−2,j, ...,Gj,j}.

The QRD algorithm is composed of two procedures:
Distributed QR Decomposition and Backward Substitution.
Distributed QR Decomposition works as follows. SM1 first
generates Gn,1 · · ·G2,1 to zero n − 1 elements in the first
column of P and hence obtain the first column of R. After

4P̂i+1,j(i, j) denotes the element of matrix P̂i+1,j in row i, column j.

SUPPLEMENT: EMERGING TECHNOLOGIES IN COMMUNICATIONS — PART 1 263

that, it transmits B1 to SM2. SM2 uses B1 to update its energy
consumption data, i.e,. the second column of P , and generates
Gn,2 · · ·G3,2 to find the second column of R. After that,
SM2 transmits B1 and B2 to SM3, and so on and so forth.
Finally, SMn receives B1, B2, ..., and Bn−1 from SMn−1,
updates its own energy consumption data, finds the nth column
of R. SMn then transmits B1, B2, ..., and Bn to the collector.
Therefore, at the end of this procedure each smart meter SMj

can obtain the jth column of R, and the collector can compute
QT and hence QTP using (10) and (11). The procedure is
explained in details in Procedure 5.

Procedure 5 Distributed QR Decomposition
Input: j → SMj

1: if j > 1 and SMj receives B1,B2...Bj−1 from SMj−1

then
2: for f = 1 to j − 1 do
3: for r = n− 1 to f do
4: Update elements in column j of P using

Gr,f and Gr+1,f as described in (13).
5: end for
6: end for
7: for q = n to j + 1 do
8: Compute cq,j and sq,j using (12) and store them
9: Zero element pq,j using (13)

10: end for
11: end if
12: if j = 1 then
13: for q = n to j + 1 do
14: Compute cq,j and sq,j using (12) and store them
15: Zero element pq,j using (13)
16: end for
17: end if
18: if j �= n then
19: Transmit B1...Bj to SMj+1

20: else
21: Transmit B1...Bj to the collector
22: end if

After Procedure 5, the collector will instruct the smart
meters to run Backward Substitution to compute their honesty
coefficients in a distributed way. In particular, according to
(9), at SMj (1 ≤ j ≤ n) we have

rj,jkj + rj,j+1kj+1 + ...+ rj,nkn = QTP(j) (14)

where ri,j is the element in the ith row and the jth col-
umn of R, and QTP(j) is the jth element of QTP . So,
once the collector receives all the sets Bj ’s from SMn, it
will compute QTP and distribute the jth element to SMj .
SMn can then obtain its honesty coefficient kn. After that,
SMn transmits rn−1,nkn, which is needed by SMn−1 to
solve for kn−1, along with rn−2,nkn, ..., r1,nkn, needed
by SMn−2, ..., SM1, respectively, to SMn−1. Similarly,
SMj receives

∑n
q=j+1 rj,qkq from SMj+1 and solves for

kj , and then transmits
∑n

q=j rj−1,qkq along with r1,jkj , ...,
rj−2,jkj , r1,j+1kj+1, ..., rj−2,j+1kj+1, ..., r1,nkn...rj−2,nkn
to SMj−1. Finally, SM1 receives

∑n
q=2 r1,qkq from SM2 and

solves for k1. Moreover, after obtaining its honesty coefficient,
each smart meter SMj encrypts kj using the collector’s public

key, resulting in E(kj), and then transmits E(kj) to the
collector. When all the E(kj)’s have been reported to the the
collector, the LSE can be successfully solved, and hence the
collector can decrypt all the elements of k and identify all the
fraudulent users. This procedure is detailed in Procedure 6.

Procedure 6 Backward Substitution
1: if j = n or SMj receives packet from SMj+1 then
2: Compute kj as described in (14) using sj+1 if

necessary
3: Compute E(kj) and transmit E(kj) to the collector
4: Compute rq,jkj for q = j − 1, j − 2, ..., 1
5: if j �= 1 then
6: Compute sj =

∑n
q=j rj−1,qkq

7: Transmit sj to SMj−1

8: Transmit r1,jkj , ..., rj−2,jkj , r1,j+1kj+1, ...,
rj−2,j+1kj+1, ..., r1,nkn, ..., rj−2,nkn to
SMj−1

9: end if
10: end if

Notice that in QRD, although the collector can recover Q
by knowing the rotation matrices Gi,j’s, it does not know R
and hence cannot recover P . Moreover, similar to that in LUD
and LUDP, we can enable each neighboring two smart meters,
i.e., SMj and SMj+1 where 1 ≤ j ≤ n − 1, to establish a
symmetric security key on their own and encrypt the data
transmitted in Procedure 6 (line 7 and line 8) to protect users’
privacy, if the collector can eavesdrop on all the transmissions
in the network.

D. Variable Honesty Coefficients

In the above LUD, LUDP, and QRD algorithms, we have
only considered that the honesty coefficient vector k is a
constant5. However, when an illegal user commits energy theft,
it is possible that the rate at which he/she steals energy is
variable. In other words, an illegal user can alter the smart
meter in such a way that it steals energy at different rates
at different times. Unfortunately, if k changes in an LSE,
the proposed algorithms may not work well. Next, we design
adaptive algorithms to address this problem.

We notice that when k changes in an LSE, the LUD, LUDP,
and QRD algorithms will result in an honesty coefficient
vector, many of whose elements are not equal to 1. Thus,
when the collector gets the honesty coefficient vector k and
counts the number of elements that are not equal to 1, it can
infer by statistics whether it is possible to have this many
energy thieves in the network. If it is unlikely for this event
to happen, the collector can reduce the sampling period SP
and run the algorithms again, until the possibility of that event
is high and k does not change any more.

We give a mathematical model as follows. Assume there are
n users in a serviced area and each of them commits energy
theft independently with the same probability p. Let X denote
the total number of energy thieves in the neighborhood. Then,
X is a random variable, which has a Binomial distribution.

5Note that we can enable the SMs to report to the collector if they are
disconnected from the loads.

264 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS/SUPPLEMENT, VOL. 31, NO. 9, SEPTEMBER 2013

Thus, when the collector runs LUD/LUDP/QRD and obtains
the honesty coefficient vector k, it can find the number of
elements that are not equal to 1, which we denote by Y .
Then, the collector can calculate the probability that this event
happens as follows:

P (X = Y) =
(n
Y

)
pY (1− p)n−Y . (15)

In addition, in the case that each user j commits energy theft
independently with a different probability pj , X is also a ran-
dom variable, but its expectation becomes E[X] =

∑n
j=1 pj .

Recall the Chernoff bounds [21]:

• For any δ > 0,

P (X > (1 + δ)E[X]) < e−E[X]f(δ)

where f(δ) = (1 + δ) log(1 + δ)− δ.
• For any 0 < δ < 1,

P (X < (1− δ)E[X]) < e−
1
2 δ

2
E[X].

Then, the collector can infer whether the obtained k is true
or not by calculating

P (X ≥ Y) < e−E[X]f(δ) with δ = Y/E[X]− 1 (16)

when Y > E[X], and

P (X ≤ Y) < e−
1
2 δ

2
E[X] with δ = 1− Y/E[X] (17)

when Y < E[X]. Besides, when Y = E[X], we set P (X =
Y) = 16.

Thus, if the estimated probability P is lower than a thresh-
old th, we reduce the sampling period SP by g (g > 0), which
is a step variable, and run the LUD/LUDP/QRD algorithm
again to obtain another k. This process repeats until P is no
less than the threshold and the obtained k is the same as the
previous one. By then we consider the k is true, i.e., the real
honesty coefficient vector in the network.

We finally present the adaptive LUD/LUDP/QRD algorithm
in Procedure 7, which can detect illegal users with variable
honesty coefficients.

V. COMPUTATIONAL AND COMMUNICATION COMPLEXITY

ANALYSIS

In this section we analyze the computational and communi-
cation complexities of LUDP and QRD, the two stable algo-
rithms. We define the computational complexity as the number
of elementary arithmetic operations (additions, subtractions,
multiplications, divisions, and square roots), plus the number
of comparisons and row exchanges needed to find vector k.
We define the communication complexity as the total traffic
demand in the network, i.e., the total number of quantities that
need to be transmitted in the network.

6As shown in Procedure 7, by setting P (X = Y) = 1 in this case, we will
run the LUD/LUDP/QRD algorithm again with a reduced sampling period. If
the obtained k does not change any more, we consider it is the true honesty
coefficient vector we are looking for.

Procedure 7 Adaptive LUD/LUDP/QRD Algorithm
1: repeat
2: The collector instructs all SMs to take n samples

with a initial sampling period SP
3: Run the LUD/LUDP/QRD algorithm
4: if The collector receives all elements in k then
5: Y = the number of elements in k unequal to 1,

i.e., the number of illegal SMs
6: end if
7: The collector calculates the probability that there

are Y illegal users according to (15), (16) or (17),
denoted by P .

8: if P < th (a threshold) or P = 1 then
9: SP = SP − g (g > 0 is a step variable)

10: end if
11: until P ≥ th and k does not change any more

A. The LUDP Algorithm

1) Computational Complexity: To determine LUDP’s com-
putational cost, we need look into the operations in Procedures
3, 4, and 2 as follows.

In Procedure 3, lines 6, 8, 14, 15 and 17 conduct compu-
tations. Specifically, line 6 performs one row exchange and
repeats (j − 1) times at SMj , where 2 ≤ j ≤ n and n is the
number of users in the network. Line 15 also performs one row
exchange and repeats (n − 1) times. Thus, the total number
of row exchanges in Procedure 3 is

∑n
j=2(j− 1)+ (n− 1) =

n2+n−2
2 .

Line 8 performs two elementary operations and lies inside
a nested “for” loop. To find the total number of times that line
8 is executed, we first consider the nested “for” loops only,
then consider the number of times the procedure is executed.
In particular, the inner “for” loop iterates (n − f) times and
the outer “for” loop iterates (j−1) times. Therefore, we have
that line 8 executes

∑j−1
f=1(n− f) = n(j − 1)− j(j−1)

2 times
for each 2 ≤ j ≤ n. Then, the total number of elementary
operations contributed by this line is 2

∑n
j=2

(
n(j − 1) −

j(j−1)
2

)
= 2n3−3n2+n

3 .
Line 14 contributes one search for the highest absolute value

among (n − j + 1) elements in column j, where 1 ≤ j ≤
n − 1. In the worst case scenario, each search needs (n −
j) comparisons to determine the pivot row. Thus, the total
number of elementary operations by line 14 is

∑n−1
j=1 (n−j) =

n2−n
2 .
In addition, line 17 performs one elementary operation and

repeats (n − j) times for 1 ≤ j ≤ n − 1. Therefore, the
total number of elementary operations performed by line 17
is

∑n−1
j=1 (n− j) = n2−n

2 .
In Procedure 4, line 6 computes (j−1) multiplications and

as many additions or subtractions, which are the computations
in lines 8 and 9 carried out at the previous node. Line 11
also conducts j(n − j − 1) multiplications for 1 ≤ j ≤
n − 1. Therefore, the total number of elementary arithmetic
operations in the Forward Substitution procedure is given by
2
∑n

j=1(j − 1) = n2 − n.
The computational complexity of Procedure 2, i.e., Back-

ward Substitution, is similar to that of Procedure 4, i.e.,

SUPPLEMENT: EMERGING TECHNOLOGIES IN COMMUNICATIONS — PART 1 265

Forward Substitution, with the exception of n additional
divisions. So Procedure 2’s computational complexity is

2

n∑
j=1

(j − 1) + n = n2. (18)

As a result, adding the above computational complexity
results together, we can find that the total computational
complexity of LUDP, denoted by PCLUDP , is

PCLUDP =
4n3 + 15n2 − 7n− 6

6
.

2) Communication Complexity: The total communication
complexity of LUDP is also determined by the traffic demand
of Procedures 3, 4, and 2.

In Procedure 3, only lines 20 and 23 account for commu-
nications. According to line 20, SMj transmits to SMj+1 the
first j columns of L (n− f +1 elements in column f) and j
pivot row indexes. Besides, in line 23, SMn transmits all the
n pivot row indices to SM0, i.e., n quantities. Thus, the traffic
demand of Procedure 3 is

∑n−1
j=1

(∑j
f=1(n−f+1)+j

)
+n =

4n3+6n2−2n
12 .

In Procedure 4, lines 3, 7, 10, 11, and 14 carry out transmis-
sions. Lines 3 and 14 are executed only once and transmit one
quantity each, while lines 7 and 10 repeat (n− 1) times, each
of which transmits one quantity. Line 11 transmits j(n−j−1)
quantities for 1 ≤ j ≤ n−1. Consequently, the traffic demand
of Procedure 4 is

∑n−1
j=1 j(n − j − 1) + 2(n − 1) + 2 =

n3−3n2+14n
6 .

Similarly, in Procedure 2, lines 3, 7, and 8 carry out
transmissions. Particularly, lines 3 and 7 transmit one quantity
each and repeat n and n − 1 times, respectively. Line 8
transmits (j−2)(n−j+1) quantities for 2 ≤ j ≤ n. Therefore,
the traffic demand of Procedure 2 is

n∑
j=2

(j−2)(n− j+1)+2n−1 =
n3 − 3n2 + 14n− 6

6
. (19)

Thus, from the above results, we can find that the total
communication complexity of LUDP, denoted by MCLUDP ,
is

MCLUDP =
8n3 − 6n2 + 54n− 12

12
.

B. The QRD Algorithm

1) Computational Complexity: We need examine Proce-
dures 5 and 6 to analyze QRD’s computational complexity.

In Procedure 5, line 4 performs six elementary operations
(n − f) times for 1 ≤ f ≤ j − 1, where 2 ≤ j ≤ n.
Thus, the total number of elementary operations by line 4
is 6

∑n
j=2

∑j
f=1(n− f) = 2n3 − 8n+ 6.

Besides, line 14 carries out six elementary operations and
repeats (n− j) times for 1 ≤ j ≤ n− 1. Therefore, the total
number of elementary operations by line 14 is 6

∑n−1
j=1 (n −

j) = 3n2 − 3n.
Moreover, the computational complexity of Procedure 6

is the same as that of Procedure 2 shown in (18). As a
result, from the above results and (18), we can have that the
computational complexity of QRD, denoted by PCQRD , is

PCQRD = 2n3 + 4n2 − 11n+ 6.

2) QRD Communication Complexity: The total communi-
cation complexity of QRD is also determined by the traffic
demand of Procedures 5 and 6.

In Procedure 5, lines 19 and 21 carry out transmissions of
B1...Bj for 1 ≤ j ≤ n. Since Bk (1 ≤ k ≤ j) contains n− k
Gp,q sets, each of which contains two quantities, the traffic
demand of Procedure 5 is 2

∑n
j=1

∑j
k=1(n− k) = 2n3−2n

3 .
Moreover, the traffic demand of Procedure 6 is the same

as that of Procedure 2 shown in (19). Consequently, the
communication complexity of QRD, denoted by MCQRD, is

MCQRD =
5n3 − 3n2 + 10n− 6

6
.

VI. SIMULATION RESULTS

Here, we perform two series of simulations to evaluate the
performance of our privacy-preserving energy theft detection
algorithms LUD, LUDP, and QRD. In the first part, we assume
that illegal users steal energy at a constant rate and thus
have constant honesty coefficients. In the second part, we
consider that illegal users have variable honesty coefficients.
We conduct simulations in Matlab R2010a. The simulation
results in the above two cases are presented in Section VI-A
and Section VI-B, respectively.

Besides, we generate users’ energy consumption data, P ,
based on a set of data from [22] and [23]. These two studies
conduct experiments in which both commercial and residential
users are metered every hour and every half-hour, respectively.
With these measurements, both studies provide typical daily
user load profiles for different days of the week and different
seasons of the year.

A. Constant Honesty Coefficients

We first perform simulations when illegal users steal energy
at a constant rate. In other words, each illegal SM chooses
a rate to steal energy and never changes this rate or stops
stealing, thus having a constant honesty coefficient.

We evaluate the performance of LUD, LUDP, and QRD,
when every user commits energy theft with a probability of
0.3 and there are totally 15, 30, and 50 users, respectively.
Each energy thief chooses an honesty coefficient uniformly
and randomly in [1.1, 10]. As shown in Fig. 2, the LUD
algorithm can work well when there are 15 and 30 users in
total. In particular, in Fig. 2(a) we can see that 6 users have
an honesty coefficient larger than 1. It means that these 6 SMs
only record a fraction of their consumed energy. Using these
results, the collector can easily identify the energy thieves and
how much less they have paid in their monthly bills. We can
also observe that the legal users have an honesty coefficient
equal to 1 and can be easily identified as well. Similar results
are shown in Fig. 2(b) when there are 30 users. Besides,
we can also find that LUDP and QRD can obtain the same
results as LUD in these two cases. Moreover, the results of
LUD, LUDP, and QRD when the number of users is 50 are
presented in Fig. 3. In this case, the LUD algorithm is not
stable. It finds 49 illegal users while in practice there are only
17 energy thefts. In contrast, the LUDP and QRD algorithms
can successfully identify all the 17 illegal users.

266 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS/SUPPLEMENT, VOL. 31, NO. 9, SEPTEMBER 2013

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

1.5

2

2.5
6 illegal users found

SM ID

va
lu

e
of

 k

(a) 15 users

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5
7 illegal users found

SM ID

va
lu

e
of

 k

(b) 30 users

Fig. 2. Elements of k obtained by the LUD algorithm.

B. Variable Honesty Coefficients

We then conduct simulations when illegal users steal energy
at variable rates. We consider that each energy thief chooses a
new honesty coefficient uniformly and randomly in [1.1, 10]
each time after a certain period. we first consider that all the
users commit energy theft with the same probability p = 0.3,
and then consider that each user commits energy theft with a
probability independently and randomly chosen between 0.3
and 0.7.

In particular, when all the users have the same cheating
probability p = 0.3, we find that the adaptive LUD algorithm
is not stable when there are more than 25 users in the network.
The results are omitted due to space limitation. Besides, we
show the results of the adaptive LUDP/QRD algorithm in
Fig. 4, when the number of users is equal to 100, 200, and
300, respectively. We can see that all the energy thieves can be
found. Moreover, when each user commits energy theft with
a probability independently and randomly chosen between 0.3
and 0.7, we show the results of the adaptive LUDP/QRD
algorithm in Fig. 5, in the cases that the number of users
is equal to 100, 200, and 300, respectively. We can find that
in these cases, the adaptive LUDP/QRD algorithm can also
successfully and efficiently identify those fraudulent users.

0 5 10 15 20 25 30 35 40 45 50
−300

−200

−100

0

100

200

300

400

500
49 illegal users found

SM ID

va
lu

e
of

 k

(a) LUD

5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5
17 illegal users found

SM ID

va
lu

e
of

 k

(b) LUDP and QRD

Fig. 3. Elements of k obtained by the LUD, LUDP, and QRD algorithms
in a network of 50 users.

VII. CONCLUSION

In this paper, we have presented three P2P computing
algorithms, i.e., LUD, LUDP, and QRD, which can identify
the users who are committing energy theft in smart grids while
preserve all users’ privacy. The three algorithms are distributed
algorithms and are based on LU or QR decomposition. We
can observe that no private data from any user needs to be
transmitted to other users or to the collector, which cannot be
recovered either, thus preserving users’ privacy. We have also
analyzed the computational and communication complexities
of the proposed algorithms, and find that QRD has higher com-
putational complexity and higher communication complexity
compared to LUDP. Moreover, extensive simulations have
been conducted. The simulation results show that fraudulent
users can be detected both when they commit energy theft at
a constant rate, i.e., with constant honesty coefficients, and
when they steal energy at variable rates, i.e., with variable
honesty coefficients.

REFERENCES

[1] S. Salinas, M. Li, and P. Li, “Privacy-preserving energy theft detection
in smart grids,” in Proc. IEEE SECON, June 2012.

[2] P. McDaniel and S. McLaughlin, “Security and privacy challenges in the
smart grid,” IEEE Security Privacy, vol. 7, no. 3, pp. 75–77, May–June
2009.

[3] A. Nizar, Z. Dong, and Y. Wang, “Power utility nontechnical loss
analysis with extreme learning machine method,” IEEE Trans. Power
Syst., vol. 23, no. 3, pp. 946–955, Aug. 2008.

[4] J. Nagi, K. Yap, S. Tiong, S. Ahmed, and A. Mohammad, “Detection
of abnormalities and electricity theft using genetic support vector
machines,” in Proc. IEEE Region 10 Conf., Nov. 2008.

SUPPLEMENT: EMERGING TECHNOLOGIES IN COMMUNICATIONS — PART 1 267

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9
28 illegal users found

SM ID

va
lu

e
of

 k

(a) 100 users

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

9

10
64 illegal users found

SM ID

va
lu

e
of

 k

(b) 200 users
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

0

1

2

3

4

5

6

7

8

9
96 illegal users found

SM ID

va
lu

e
of

 k

(c) 300 users

Fig. 4. Elements of k obtained by the LUDP and QRD algorithms – constant cheating probability.

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9
55 illegal users found

SM ID

va
lu

e
of

 k

(a) 100 users

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

9
90 illegal users found

SM ID

va
lu

e
of

 k

(b) 200 users
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

0

1

2

3

4

5

6

7

8

9

10
137 illegal users found

SM ID

va
lu

e
of

 k

(c) 300 users

Fig. 5. Elements of k obtained by the LUDP and QRD algorithms – variable cheating probability.

[5] S. Depuru, L. Wang, and V. Devabhaktuni, “Support vector machine
based data classification for detection of electricity theft,” in Proc. Power
Syst. Conf. Exposition (PSCE), Mar. 2011.

[6] C. Bandim, J. Alves, A. Pinto, F. Souza, M. Loureiro, C. Magalhges,
and F. Galvez-Durand, “Identification of energy theft and tampered
meters using a central observer meter: a mathematical approach,” in
Proc. Transmission Distrib. Conf. Exposition, Sep. 2003.

[7] A. Ruzzelli, C. Nicolas, A. Schoofs, and G. O’Hare, “Real-time recog-
nition and profiling of appliances through a single electricity sensor,” in
Proc. IEEE SECON, June 2010.

[8] E. L. Quinn, “Privacy and the new energy infrastructure,” Social Science
Research Netw., pp. 1995–2008, 2009 [Online]. Available: http://ssrn.
com/paper=1370731

[9] “Privacy and the smart grid,” NIST Guidelines for Smart Grid Cy-
ber Security: vol.2, Aug. 2010 [Online]. Available: http://csrc.nist.gov/
publications/nistir/ir7628/nistir-7628_vol1.pdf

[10] F. Li, B. Luo, and P. Liu, “Secure information aggregation for smart
grids using homomorphic encryption,” in Proc. 1st IEEE Int. Conf.
Smart Grid Commun. (SmartGridComm), Oct. 2010.

[11] W. He, X. Liu, H. Nguyen, K. Nahrstedt, and T. Abdelzaher, “PDA:
Privacy-preserving data aggregation in wireless sensor networks,” in
Proc. IEEE INFOCOM, May 2007.

[12] X. Shen, H. Yu, J. Buford, and M. Akon, Handbook of Peer-to-Peer
Networking. Springer Verlag, 2010.

[13] B. Noble, Applied Linear Algebra. Prentice Hall, 1969.
[14] S. Abdelhak, A. Abdelgawad, S. Ghosh, and M. Bayoumi, “A complete

scheme for distributed LU decomposition on wireless sensor networks,”

in Proc. 53rd IEEE Int. Midwest Symp. Circuits Syst. (MWSCAS), Aug.
2010.

[15] Q. Liang and L. Wang, “Redundancy reduction in wireless sensor
networks using SVD-QR,” in Proc. IEEE Military Commun. Conf.
(MILCOM), Oct. 2005.

[16] A. K. Zille Huma Kamal amd Ajay Gupta Leszek Lilien, “Classification
using efficient LU decomposition in sensornets,” in Proc. WSN, July
2006.

[17] G. A. Geistt and C. H. Romine, “LU factorization algorithms on
distributed-memory multiprocessor architectures,” SIAM J. Scientific
Statistical Comput., vol. 9, no. 4, pp. 639–649, July 1988.

[18] S. Depuru, L. Wang, and V. Devabhaktuni, “A conceptual design using
harmonics to reduce pilfering of electricity,” in Proc. Power Energy
Society General Meeting, July 2010.

[19] M. LeMay and C. A. Gunter, “Cumulative attestation kernels for
embedded systems,” in Proc. 14th European Conf. Research Comput.
Security (ESORICS), Sep. 2009.

[20] M. Oliveira and A. Padilha-Feltrin, “A top-down approach for distri-
bution loss evaluation,” IEEE Trans. Power Del., vol. 24, no. 4, pp.
2117–2124, Oct. 2009.

[21] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms, 2nd ed. MIT Press, 2001.

[22] “California commercial end-use survey,” Itron, June 2006 [Online].
Available: www.energy.ca.gov/ceus/

[23] “Electricity user load profiles by profile class,” UKERC Energy Data
Center, June 1997 [Online]. Available: http://data.ukedc.rl.ac.uk/browse/
edc/Electricity/LoadProfile/data

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ACaslonPro-Bold
 /ACaslonPro-BoldItalic
 /ACaslonPro-Italic
 /ACaslonPro-Regular
 /ACaslonPro-Semibold
 /ACaslonPro-SemiboldItalic
 /AdobeFangsongStd-Regular
 /AdobeHeitiStd-Regular
 /AdobeKaitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobeSongStd-Light
 /AGaramondPro-Bold
 /AGaramondPro-BoldItalic
 /AGaramondPro-Italic
 /AGaramondPro-Regular
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Aharoni-Bold
 /Algerian
 /Andalus
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Aparajita
 /Aparajita-Bold
 /Aparajita-BoldItalic
 /Aparajita-Italic
 /ArabicTypesetting
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BirchStd
 /BlackadderITC-Regular
 /BlackoakStd
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScriptMT
 /BrushScriptStd
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ChaparralPro-Bold
 /ChaparralPro-BoldIt
 /ChaparralPro-Italic
 /ChaparralPro-Regular
 /CharlemagneStd-Bold
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CooperBlackStd
 /CooperBlackStd-Italic
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /DaunPenh
 /David
 /David-Bold
 /DFKaiShu-SB-Estd-BF
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /DokChampa
 /Dotum
 /DotumChe
 /Ebrima
 /Ebrima-Bold
 /EccentricStd
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EuphemiaCAS
 /FangSong
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Gabriola
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Gautami-Bold
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GiddyupStd
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /Gisha
 /Gisha-Bold
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HoboStd
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /IskoolaPota
 /IskoolaPota-Bold
 /JasmineUPC
 /JasmineUPCBold
 /JasmineUPCBoldItalic
 /JasmineUPCItalic
 /Jokerman-Regular
 /JuiceITC-Regular
 /KaiTi
 /Kalinga
 /Kalinga-Bold
 /Kartika
 /Kartika-Bold
 /KhmerUI
 /KhmerUI-Bold
 /KodchiangUPC
 /KodchiangUPCBold
 /KodchiangUPCBoldItalic
 /KodchiangUPCItalic
 /Kokila
 /Kokila-Bold
 /Kokila-BoldItalic
 /Kokila-Italic
 /KozGoPro-Bold
 /KozGoPro-ExtraLight
 /KozGoPro-Heavy
 /KozGoPro-Light
 /KozGoPro-Medium
 /KozGoPro-Regular
 /KozMinPro-Bold
 /KozMinPro-ExtraLight
 /KozMinPro-Heavy
 /KozMinPro-Light
 /KozMinPro-Medium
 /KozMinPro-Regular
 /KristenITC-Regular
 /KunstlerScript
 /LaoUI
 /LaoUI-Bold
 /Latha
 /Latha-Bold
 /LatinWide
 /Leelawadee
 /Leelawadee-Bold
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMT-Bold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /LithosPro-Black
 /LithosPro-Regular
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /MalgunGothic
 /MalgunGothicBold
 /MalgunGothicRegular
 /Mangal
 /Mangal-Bold
 /Marlett
 /MaturaMTScriptCapitals
 /Meiryo
 /Meiryo-Bold
 /Meiryo-BoldItalic
 /Meiryo-Italic
 /MeiryoUI
 /MeiryoUI-Bold
 /MeiryoUI-BoldItalic
 /MeiryoUI-Italic
 /MesquiteStd
 /MicrosoftHimalaya
 /MicrosoftJhengHeiBold
 /MicrosoftJhengHeiRegular
 /MicrosoftNewTaiLue
 /MicrosoftNewTaiLue-Bold
 /MicrosoftPhagsPa
 /MicrosoftPhagsPa-Bold
 /MicrosoftSansSerif
 /MicrosoftTaiLe
 /MicrosoftTaiLe-Bold
 /MicrosoftUighur
 /MicrosoftYaHei
 /MicrosoftYaHei-Bold
 /Microsoft-Yi-Baiti
 /MingLiU
 /MingLiU-ExtB
 /Ming-Lt-HKSCS-ExtB
 /Ming-Lt-HKSCS-UNI-H
 /MinionPro-Bold
 /MinionPro-BoldCn
 /MinionPro-BoldCnIt
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Medium
 /MinionPro-MediumIt
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /Mistral
 /Modern-Regular
 /MongolianBaiti
 /MonotypeCorsiva
 /MoolBoran
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /MyriadPro-Bold
 /MyriadPro-BoldCond
 /MyriadPro-BoldCondIt
 /MyriadPro-BoldIt
 /MyriadPro-Cond
 /MyriadPro-CondIt
 /MyriadPro-It
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Narkisim
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /NuevaStd-BoldCond
 /NuevaStd-BoldCondItalic
 /NuevaStd-Cond
 /NuevaStd-CondItalic
 /Nyala-Regular
 /OCRAExtended
 /OCRAStd
 /OldEnglishTextMT
 /Onyx
 /OratorStd
 /OratorStd-Slanted
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PlantagenetCherokee
 /Playbill
 /PMingLiU
 /PMingLiU-ExtB
 /PoorRichard-Regular
 /PoplarStd
 /PrestigeEliteStd-Bd
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rod
 /RosewoodStd-Regular
 /SakkalMajalla
 /SakkalMajallaBold
 /ScriptMTBold
 /SegoePrint
 /SegoePrint-Bold
 /SegoeScript
 /SegoeScript-Bold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /SegoeUI-Light
 /SegoeUI-SemiBold
 /SegoeUISymbol
 /ShonarBangla
 /ShonarBangla-Bold
 /ShowcardGothic-Reg
 /Shruti
 /Shruti-Bold
 /SimHei
 /SimplifiedArabic
 /SimplifiedArabic-Bold
 /SimplifiedArabicFixed
 /SimSun
 /SimSun-ExtB
 /SnapITC-Regular
 /Stencil
 /StencilStd
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TektonPro-Bold
 /TektonPro-BoldCond
 /TektonPro-BoldExt
 /TektonPro-BoldObl
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /TraditionalArabic
 /TraditionalArabic-Bold
 /TrajanPro-Bold
 /TrajanPro-Regular
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga
 /Tunga-Bold
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Utsaah
 /Utsaah-Bold
 /Utsaah-BoldItalic
 /Utsaah-Italic
 /Vani
 /Vani-Bold
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vijaya
 /Vijaya-Bold
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Vrinda-Bold
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

