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Abstract—In the U.S., energy theft causes six billion dollar
losses to utility companies (UCs) every year. With the smart grid
being proposed to modernize current power grids, energy theft
may become an even more serious problem since the “smart
meters” used in smart grids are vulnerable to more types of
attacks compared to traditional mechanical meters. Therefore, it
is important to develop efficient and reliable methods to identify
illegal users who are committing energy theft. Although some
schemes have been proposed for the UCs to detect energy theft
in power grids, they all require the users to send their private
information, e.g., load files or meter readings at certain times, to
the UCs which invades users’ privacy and raises serious concerns
about privacy, safety, etc. As far as we know, we are the first
to investigate the energy theft detection problem considering
users’ privacy issues. In this paper, we propose to solve in a
distributed fashion a linear system of equations (LSE) for the
users’ “honesty coefficients”, which indicate the users are honest
when equal to 1 and are fraudulent when larger than 1. In
particular, we develop two distributed privacy-preserving energy
theft detection algorithms based on LU decomposition, called
LUD and LUPD, respectively, which can identify fraudulent users
without invading any user’s privacy. Compared to LUD, LUPD
requires higher execution time but is stable even in large-size
systems. Moreover, the LUD and LUPD algorithms are proposed
in the case that users commit energy theft at a constant rate,
i.e., with constant honesty coefficients. We also propose adaptive
LUD/LUPD algorithms to account for the scenarios where the
users have variable honesty coefficients. Extensive simulations are
carried out and the results show that the proposed algorithms
can efficiently and successfully identify the fraudulent users in
the system.

I. INTRODUCTION

Energy theft has been a notorious problem in traditional
power systems. The utility companies (UCs) in the U.S.
lose approximately six billion dollars every year due to this
problem [1]. Recently, the smart grid has been proposed as
a new type of electrical grid to modernize current power
grids to efficiently deliver reliable, economic, and sustainable
electricity services. One of the most salient features of smart
grids is the replacement of conventional analog mechanical
meters by digital meters, usually called “smart meters”. In
addition to recording users’ energy usage, due to their com-
munication capability, smart meters can provide a two-way
communication path between UCs and power users, which
can facilitate efficient power system control and monitoring.
However, compared to mechanical meters which can only be
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physically tampered, smart meters are vulnerable to more types
of attacks (e.g., network attack), which may make energy theft
easier to commit and hence an even more serious problem in
smart grids.

Some research has been conducted to detect energy theft
in traditional power grids. Nizar et al. [2] employ a data
mining technique known as Extreme Learning Machine (ELM)
to classify users’ electricity consumption patterns or load-
profiles. By comparing the results to a database of users’
load profiles, the proposed algorithm yields a list of users
who could be stealing energy, which we call “energy thieves”.
Nagi et al. [3] propose a similar approach but choose to use
genetic algorithms and Support Vector Machine (SVM) instead
of ELM. Depuru et al. [4] develop another data mining based
scheme utilizing SVM as well. Unfortunately, these techniques
cannot sort out the energy thieves with absolute certainty.
In contrast, Bandim et al. [5] propose a central observer to
measure the total energy consumption of a small number
of users, and are able to identify all the energy thieves by
comparing the total energy consumption with the reported
energy consumption from the users.

Notice that in all the above works, the UC has to know some
of users’ private information, e.g., users’ load profiles or meter
readings at certain times, in order to find the energy thieves.
However, the disclosure of such information would violate
users’ privacy and raise concerns about privacy, safety, etc. In
particular, users’ private information may be sold to interested
third-parties. Insurance companies may buy load-profiles from
the UC to make premium adjustments on the users’ policies.
For example, they could find electricity consumption patterns
that increase the risk of fire in a property and increase
insurance premiums accordingly. Marketing companies may
also be interested in this data to identify potential costumers.
Moreover, criminals may utilize such private information to
commit crimes. For instance, the robbers may analyze the
energy consumption pattern of the potential victims to deduce
their daily behavior. They can even know if a robbery alarm
has been set at their target location [6]. Many researchers, such
as Quinn [7], have realized how high resolution electricity
usage information can be used to reconstruct many intimate
details of a consumer’s daily life and invade his/her privacy,
and thus call for state legislators and public utility commis-
sions to address this new privacy threat.

Unfortunately, there is currently a lack of research on
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privacy in smart grids. Li et al. [8] design a privacy-preserving
aggregation protocol to collect the total energy consumption
of a group of users at a distribution station in smart grids.
To the best of our knowledge, we are the first to investigate
privacy issues in energy theft detection.

Intuitively and as in previous works, we need to know
about a user’s electric power consumption in order to tell
whether he/she is committing fraud or not, which, however,
results in the reveal of the user’s privacy. Therefore, energy
theft detection and users’ privacy seem to be two conflicting
problems. How to detect energy theft while preserving users’
privacy is a challenging problem. In this paper, we propose
to solve in a distributed fashion a linear system of equations
(LSE), which involves the respective energy consumption of
𝑛 users in a neighborhood at 𝑛 time instances and the total
energy consumption of the 𝑛 users measured at a local data
collector, for the users’ “honesty coefficients”. If a user’s
honesty coefficient is equal to 1, this user is honest. Otherwise,
if the honesty coefficient is larger than 1, then this user has
reported less consumed energy and hence is committing fraud.
The users’ privacy can be preserved because they do not need
to disclose any of their energy consumption data to others.

More specifically, we propose to take advantage of dis-
tributed LU decomposition to solve our LSE. Although some
distributed algorithms for LU decomposition have been pro-
posed in the literature, e.g., [9]–[11], they cannot preserve each
node’s private information. In this paper, we first develop a
distributed privacy-preserving energy theft detection algorithm
by LU decomposition, called LUD. We find that LUD can
successfully identify all the energy thieves in a small size
network but may be unstable in large networks1. Then, we
design another algorithm by LU decomposition with partial
pivoting, called LUPD, which can find all the energy thieves
even in large size networks but has higher execution time.
Besides, the LUD and LUPD algorithms are proposed in the
case that users commit energy theft at a constant rate, i.e.,
with constant honesty coefficients. We also propose adaptive
LUD/LUPD algorithms to account for the scenarios where the
users have variable honesty coefficients.

The rest of this paper is organized as follows. Section II in-
troduces the considered network architecture, possible attacks
on smart meters by energy thieves, and how we can implement
the proposed algorithms in the smart meters without being
tampered. Section III presents the linear system of equations
for energy theft detection, and Section IV details the proposed
distributed algorithms for solving the LSE. Simulation results
are presented in Section V. Finally, we conclude this paper in
Section VI.

II. NETWORK MODEL

In this section, we first present the network architecture
considered in this paper, and then briefly introduce the possible
attacks on smart meters (SMs) by energy thieves, and possible
implementations of the proposed algorithms on the SMs.

1This is due to the rounding errors in LU decomposition.

Fig. 1. A typical architecture of Neighborhood Area Network (NAN).

A. Network Architecture

In the smart grid, communications and electricity networks
overlay each other. Utility companies (UCs) deploy control
centers (CC) to monitor their distribution stations (DS) and
distribution networks, and deploy SMs at users’s premises to
measure their individual energy consumption. Since the CC are
usually physically far away from the users, a communication
entity that can facilitate the communication between the SMs
and the CC is necessary. To this end, an access point, called
“the collector”, is placed at each of the serviced areas. One
SM is installed at each collector to measure the total energy
consumed by the serviced area.

A typical network architecture is depicted in Figure 1. In a
serviced area, the users’ SMs together with the collector form
a Neighborhood Area Network (NAN). The communications
between SMs and between SMs and the collector are carried
out wirelessly due to SMs’ communication capability, while
the communications among the CC, the DS, and the collector
are conducted via wired medium.

B. Attacks on Smart Meters

Smart meters can provide the users with a plethora of unique
features. For example, users can be provided with real time
electricity pricing and thus determine when to turn on/off
some of their electrical devices. Smart meters can also send
incentive-based load reduction signals to users so that they
can be compensated for their efforts to save energy. However,
compared to mechanical meters which can only be physically
tampered, smart meters are vulnerable to more types of attacks,
which may make energy theft easier to commit and hence an
even more serious problem in smart grids.

1) Physical Attack: Conventional mechanical meters and
SMs are both vulnerable to this type of attack. It refers to the
scenarios where illegal users physically modify their meters to
record wrong values that will lower their electric bills. Physical
attack to electricity meters includes meter reversing, tampering
with strong magnets, pressure coil damaging, supply voltage
regulation, and even disconnecting the meters. The readers are
referred to [12] for a more extensive description on physical
attacks.

One way to detect physical attacks is to visually check
the meter for any broken seals or other signs of damage.
However, this detection method is both resource and time
consuming because employees from the UC have to visit the

606



users’ premises to verify the meters’ integrity. Moreover, signs
of damage may not be obvious and seals may be replaced.

2) Network Attack: An illegal user can operate a malicious
node to perform network attack. For example, an illegal user
may impersonate his/her own SM and make it record lower
power consumption. In this case, the illegal user may tamper
all or some of the functionalities of the SMs. Network attack
may be easier to launch and more difficult to detect.

In addition to attacking the smart meter, a user may also
get some energy that is not being measured, e.g., through a
conductor that bypasses the meter. In this case, the smart meter
does not correctly measure the energy consumption by the
user and hence can also be considered as being attacked. The
proposed algorithms can address all these problems.

C. Possible Implementation of the Proposed Algorithms

The proposed algorithms can be implemented in the
firmware of the smart meters. Many mechanisms have been
proposed to protect the firmware of embedded systems, such
as passwords, centralized intrusion detection, local intrusion
detection, and intrusion self-reporting. For example, LeMay
et al. [13] develop a remote attestation mechanism that allows
centralized intrusion detection of all SMs in a neighborhood. If
any intrusion to the firmware is detected by the UC, the suspect
SMs cannot be trusted and must be inspected. Consequently,
SMs can be trusted in correctly executing the proposed privacy
preserving energy theft detection algorithms2.

III. A LINEAR SYSTEM OF EQUATIONS FOR ENERGY

THEFT DETECTION

In this section, we present a mathematical model for energy
theft detection. As mentioned before, we assume that an SM is
installed at the collector such that the collector can know the
total power consumption of the users in the service area. We
also assume that the UC installs an SM at each of the users’
premises, which is capable of recording energy consumption
at any time instant.

Consider a neighborhood of 𝑛 users. We define a sampling
period denoted by 𝑆𝑃 . Then, after every sampling period, all
the 𝑛 + 1 SMs will record their energy consumption in the
past sampling period. We denote such energy consumption
recorded by user 𝑗 (1 ≤ 𝑗 ≤ 𝑛) and by the collector at time
𝑡𝑖, by 𝑝𝑡𝑖,𝑗 and 𝒫𝑡𝑖 , respectively. We further define an honesty
coefficient, denoted by 𝑘𝑗 where 𝑘𝑗 > 0, for each user 𝑗. Thus,
𝑘𝑗 ⋅ 𝑝𝑡𝑖,𝑗 gives the real energy consumption by user 𝑗 from
time instant 𝑡𝑖 − 𝑆𝑃 to time instant 𝑡𝑖. Since the sum of all
the recorded energy consumption at time 𝑡𝑖 must be equal to
the total energy consumption of the neighborhood measured
at the collector at time 𝑡𝑖, we have

𝑘1𝑝𝑡𝑖,1 + 𝑘2𝑝𝑡𝑖,2 + ...+ 𝑘𝑛𝑝𝑡𝑖,𝑛 = 𝒫𝑡𝑖 (1)

Our objective is to find all the 𝑘𝑗’s. Obviously, 1) if 𝑘𝑗 = 1,
then user 𝑗 is honest and did not steal energy; 2) if 𝑘𝑗 > 1,

2Note that although we assume a secure firmware for SMs, the upper layer
software for SMs can still be compromised. We only make this assumption
to allow the proposed algorithms to be correctly executed.

then user 𝑗 recorded less energy than what he/she consumes
and hence is an energy thief; and 3) if 0 < 𝑘𝑗 < 1, then user 𝑗
recorded more than what he/she consumes, which means that
smart meter may be malfunctioning. In order to solve for 𝑘𝑗’s,
we need 𝑛 independent linear equations like the one shown
above3.

With 𝑛 linear equations, we can thus have a linear system
of equations (LSE) as follows:

𝑘1𝑝𝑡1,1 + 𝑘2𝑝𝑡1,2 + ...+ 𝑘𝑛𝑝𝑡1,𝑛 = 𝒫𝑡1

...

𝑘1𝑝𝑡𝑛,1 + 𝑘2𝑝𝑡𝑛,2 + ...+ 𝑘𝑛𝑝𝑡𝑛,𝑛 = 𝒫𝑡𝑛

This LSE can also be formulated in matrix form:

𝑷𝒌 = 퓟. (2)

The 𝑗th column of 𝑷 represents the data recorded and stored
by user 𝑗 or 𝑆𝑀𝑗 , while the 𝑖th row of 𝑷 represents the data
recorded by all the users at 𝑡𝑖4.

Besides, finding the honesty coefficient vector, 𝒌, is delay
tolerant. In other words, 𝒌, is not required to be found and
transmitted to the collector in real time. This gives priority to
other real time traffic in the NAN, such as electricity pricing,
incentive-based load reduction signals, and emergency load
reduction signals. In the next section, we will present our
privacy-preserving energy theft detection algorithms, which
can compute the unknown honesty coefficient vector 𝒌 in a
distributed way.

IV. DISTRIBUTED COMPUTATION OF HONESTY

COEFFICIENTS

In what follows, we develop two algorithms that can solve
the linear system of equations in (2) while preserving the
users’ privacy. The challenge is that each smart meter 𝑆𝑀𝑗

needs to find its own honesty coefficient 𝑘𝑗 without knowing
any of the other smart meters’ recorded energy consumption
data 𝑝𝑡𝑖,𝑙’s, where 1 ≤ 𝑖 ≤ 𝑛 and 𝑗 ∕= 𝑙.

Specifically, we first develop an LU decomposition based
approach, called LUD, to detect the energy thieves while
preserving users’ privacy. We notice that in its original form,
LUD may not be numerically stable in large size networks.
The reason is that the inaccuracies involved when using finite
resolution numbers may lead to solutions with significant
errors when 𝑛 is large. Therefore, after proposing the LUD
algorithm, we design another algorithm to achieve numerical
stability by exchanging rows of the matrix 𝑷 during LU
decomposition, i.e., LUD with partial pivoting (LUPD).

Notice that although some other methods have been pro-
posed in the literature, which can solve LSEs with lower com-
putational complexity than LU decomposition, they usually

3For example, the collector can choose the 𝑛 time instances when 𝒫𝑡𝑖 ’s all
have different values. In this case, it is highly likely that the 𝑛 linear equations
are independent of each other, especially when 𝑛 is large.

4Note that our model does not take into account power dissipation, or
technical losses (TLs), which can be calculated using measurements at the
collector and the knowledge of the distribution network without compromising
users’ privacy [14].
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consider special matrices. For example, the Thomas algorithm
can decompose the matrix with computational complexity of
𝑂(𝑛) if the matrix under study is a tridiagonal matrix. Besides,
Cholesky decomposition can improve the computational com-
plexity of LU decomposition by a constant factor, but requires
the matrix to be positive and definite [15]. Since the LSE
studied in this paper has a dense matrix 𝑷 (there are always
some electrical devices working in each house/apartment, e.g.,
refrigerator, air conditioner), we choose to only employ LU
decomposition to solve the LSE.

In the following, we first detail these two algorithms, respec-
tively, when the honesty coefficient vector, 𝒌, is a constant,
and then discuss the cases where 𝒌 changes with time.

A. The LUD Algorithm

1) Algorithm Description: The LU decomposition is to
factorize the power consumption data matrix 𝑷 into two
triangular matrices: a lower triangular matrix 𝑳 and an upper
triangular matrix 𝑼 , i.e.,

𝑷 = 𝑳𝑼 . (3)

The elements of upper triangular matrix 𝑼 can be calculated
as follows:

𝑢𝑖,𝑗 = 0, 𝑖 > 𝑗

𝑢1,𝑗 = 𝑝𝑡1,𝑗 , 𝑗 = 1, 2, ..., 𝑛

𝑢𝑟,𝑗 = 𝑝𝑡𝑟,𝑗 −

𝑟−1∑
𝑘=1

𝑙𝑟,𝑘𝑢𝑘,𝑗 , 𝑟 = 2, ..., 𝑛, 𝑗 = 𝑟, ..., 𝑛

(4)

where 𝑝𝑡𝑖,𝑗 is the 𝑖th element of column 𝑗 in matrix 𝑷 .
Besides, the elements of lower triangular matrix 𝑳 can be
obtained by

𝑙𝑖,𝑗 = 0, 𝑖 < 𝑗

𝑙𝑖,1 =
𝑝𝑡𝑖,1
𝑝𝑡1,1

, 𝑖 = 1, 2, ..., 𝑛

𝑙𝑖,𝑞 =

𝑝𝑡𝑖,𝑞 −
𝑞−1∑
𝑘=1

𝑙𝑖,𝑘𝑢𝑘,𝑞

𝑢𝑞,𝑞

, 𝑞 = 2, ..., 𝑛, 𝑖 = 𝑞, .., 𝑛

(5)

Note that the diagonal elements of 𝑳 are equal to 1. This
guarantees that the decomposition of 𝑷 is unique.

After matrices 𝑳 and 𝑼 are collaboratively computed, the
following system can be solved:

𝑳𝒚 = 퓟, (6)

𝑼𝒌 = 𝒚. (7)

In particular, to solve for 𝒚, each 𝑆𝑀𝑗−1 will calculate 𝑦𝑗 as
follows, i.e., 𝑦1 = 𝒫𝑡1 , and

𝑦𝑗 = 𝒫𝑡𝑗 −

𝑗−1∑
𝑞=1

𝑙𝑗,𝑞𝑦𝑞 (8)

for 𝑗 > 1. The required values for this computation are the
elements of 𝒚 with index less than 𝑗 and row 𝑗 of 𝑳. Finally,

Each 𝑆𝑀𝑗 solves for 𝑘𝑗 using backward substitution: 𝑘𝑛 =
𝑦𝑛

𝑢𝑛,𝑛
, and

𝑘𝑗 =

𝑦𝑗 −
𝑛∑

𝑝=𝑗+1

𝑢𝑗,𝑝𝑘𝑝

𝑢𝑗,𝑗

. (9)

for 𝑗 < 𝑛.
Therefore, our LUD algorithm is composed of two parts:

Distributed LU Decomposition and Backward Substitution,
which are detailed in Procedure 1 and Procedure 2, respec-
tively. Before the algorithm can begin, the collector must
number all the SMs from 1 to 𝑛. The corresponding index,
𝑗, along with 𝒫𝑡𝑗+1

, will be transmitted to each 𝑆𝑀𝑗 . This
information will allow the users to collaboratively compute 𝑳,
𝑼 , and 𝒚. We denote the smart meter at the collector as 𝑆𝑀0.
All SMs start running Procedure 1 when the collector requests
them by sending a control message.

Procedure 1 Distributed LU Decomposition

Input: 𝑗 → 𝑆𝑀𝑗 , 𝒫𝑡𝑗+1
→ 𝑆𝑀𝑗

1: if 𝑗 = 0 or 𝑆𝑀𝑗 receives packets from 𝑆𝑀𝑗−1 then
2: for 𝑞 = 1 to 𝑗 do
3: Compute 𝑢𝑞,𝑗 using (4)
4: end for
5: for 𝑞 = 𝑗 + 1 to 𝑛 do
6: Compute 𝑙𝑞,𝑗 using equation (5)
7: end for
8: if 𝑗 < 𝑛 then
9: Compute 𝑦𝑗+1 using (8)

10: Transmit columns 1, 2, ..., 𝑗 of 𝑳 and all known
elements of 𝑦1, ..., 𝑦𝑗+1 only to 𝑆𝑀𝑗+1

11: end if
12: if 𝑗 = 𝑛 then
13: Notify the collector that 𝑳, 𝑼 , and 𝒚 are avail-

able
14: end if
15: end if

Specifically, 𝑆𝑀0 first calculates 𝑦1 = 𝒫𝑡1 , and then
transmits it to 𝑆𝑀1. 𝑆𝑀0 does not need to compute any
element of 𝑳 or 𝑼 . After 𝑆𝑀1 receives 𝑦1, it computes
column 1 of 𝑼 , column 1 of 𝑳, and 𝑦2. Then, 𝑆𝑀1 transmits
column 1 of 𝑳, 𝑦1, and 𝑦2 to 𝑆𝑀2. At 𝑆𝑀𝑗 (1 < 𝑗 < 𝑛),
it receives 𝑦1 to 𝑦𝑗 and columns 1 through 𝑗 − 1 of 𝑳 from
𝑆𝑀𝑗−1, based on which it calculates column 𝑗 of 𝑼 , column 𝑗
of 𝑳, and 𝑦𝑗+1. After that, 𝑆𝑀𝑗 transmits columns 1 through 𝑗
of 𝑳 and 𝑦1 to 𝑦𝑗+1 to 𝑆𝑀𝑗+1. Finally, 𝑆𝑀𝑛 receives 𝑦𝑛 and
columns 1 through 𝑛−1 from 𝑆𝑀𝑛−1, calculates column 𝑛 of
𝑼 and column 𝑛 of 𝑳, and notifies the collector that the Back
Substitution procedure, i.e., Procedure 2, can start. Notice that
each 𝑆𝑀𝑗 (𝑗 > 0) is responsible for computing column 𝑗 of
𝑼 , column 𝑗 of 𝑳, and 𝑦𝑗+1 (1 ≤ 𝑗 < 𝑛).

After Procedure 1 ends, 𝑆𝑀𝑗 (1 ≤ 𝑗 ≤ 𝑛) has obtained the
𝑗th column of 𝑼 and 𝑦𝑗 . The collector then instructs all the
smart meters to run Procedure 2 to solve for their own honesty
coefficients according to (8), starting from 𝑆𝑀𝑛. In particular,
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Procedure 2 Backward Substitution
1: if 𝑗 = 𝑛 or 𝑆𝑀𝑗 receives packet from 𝑆𝑀𝑗+1 then
2: Compute 𝑘𝑗 as described in (9) using 𝑠𝑗+1 if neces-

sary
3: Compute 𝐸(𝑘𝑗) and transmit 𝐸(𝑘𝑗) to the collector
4: Compute 𝑢𝑞,𝑗𝑘𝑗 for 𝑞 = 𝑗 − 1, 𝑗 − 2, ..., 1
5: if 𝑗 ∕= 1 then
6: Compute 𝑠𝑗 =

∑𝑛
𝑞=𝑗 𝑢𝑗−1,𝑞𝑘𝑞

7: Transmit 𝑠𝑗 to 𝑆𝑀𝑗−1

8: Transmit 𝑢1,𝑗𝑘𝑗 , ..., 𝑢𝑗−2,𝑗𝑘𝑗 , 𝑢1,𝑗+1𝑘𝑗+1, ...,
𝑢𝑗−2,𝑗+1𝑘𝑗+1, ..., 𝑢1,𝑛𝑘𝑛, ..., 𝑢𝑗−2,𝑛𝑘𝑛 to
𝑆𝑀𝑗−1

9: end if
10: end if

𝑆𝑀𝑛 transmits 𝑢𝑛−1,𝑛𝑘𝑛, which is needed by 𝑆𝑀𝑛−1 to solve
for 𝑘𝑛−1, along with 𝑢𝑛−2,𝑛𝑘𝑛, ..., 𝑢1,𝑛𝑘𝑛, needed by 𝑆𝑀𝑛−2,
..., 𝑆𝑀1, respectively, to 𝑆𝑀𝑛−1. Similarly, 𝑆𝑀𝑗 (1 < 𝑗 < 𝑛)
receives

∑𝑛

𝑞=𝑗+1 𝑢𝑗,𝑞𝑘𝑞 from 𝑆𝑀𝑗+1 and solves for 𝑘𝑗 ,
and then transmits

∑𝑛

𝑞=𝑗 𝑢𝑗−1,𝑞𝑘𝑞 along with 𝑢1,𝑗𝑘𝑗 , ...,
𝑢𝑗−2,𝑗𝑘𝑗 , 𝑢1,𝑗+1𝑘𝑗+1, ..., 𝑢𝑗−2,𝑗+1𝑘𝑗+1, ..., 𝑢1,𝑛𝑘𝑛...𝑢𝑗−2,𝑛𝑘𝑛
to 𝑆𝑀𝑗−1. Finally, 𝑆𝑀1 receives

∑𝑛

𝑞=2 𝑢1,𝑞𝑘𝑞 from 𝑆𝑀2 and
solves for 𝑘1. Moreover, after obtaining its honesty coefficient,
each smart meter 𝑆𝑀𝑗 encrypts 𝑘𝑗 using the collector’s public
key, resulting in 𝐸(𝑘𝑗), and then transmits 𝐸(𝑘𝑗) to the
collector. When all the 𝐸(𝑘𝑗)’s have been reported to the
collector, the LSE can be successfully solved, and hence the
collector can decrypt all the elements of 𝒌 and identify all the
fraudulent users.

Notice that in LUD, the collector does not know 𝑳 or 𝑼 ,
and hence cannot recover 𝑷 . Moreover, from equation (9),
we can observe that 𝑆𝑀𝑗 will need all the elements of 𝑼

in row 𝑗 and 𝑘𝑛, 𝑘𝑛−1, ..., 𝑘𝑗+1 in order to compute 𝑘𝑗 . If
such data are transmitted to 𝑆𝑀𝑗 separately, an eavesdropper
would be able to figure out all the elements of 𝑼 , except those
on the diagonal, by eavesdropping on all the transmissions in
the network. Since an eavesdropper is able to obtain 𝑳 by
eavesdropping, too, it can figure out some elements of 𝑷 (e.g.,
all the elements above the diagonal of 𝑷 ). To prevent this from
happening, as mentioned above and shown in Procedure 2, we
transmit the multiplication of an element of 𝑼 and the corre-
sponding honesty coefficient instead. Notice that in this case
an eavesdropper may be able to guess the power consumption
of certain honest users (i.e., those whose honesty coefficients
are equal to 1) at certain times by assuming 𝒌 = 1. However,
even so since the eavesdropper does not know the mapping
between smart meter indexes and users (only the collector
knows), it cannot really know any user’s power consumption
data. Besides, the eavesdropper does not know which users
are honest anyway. In addition, to defend against the case
that the collector has the capability of eavesdropping on all
the transmissions in the network, we can just enable each
neighboring two smart meters, i.e., 𝑆𝑀𝑗 and 𝑆𝑀𝑗+1 where
1 ≤ 𝑗 ≤ 𝑛− 1, to establish a symmetric security key on their
own to encrypt the data transmitted in Procedure 2 (line 7 and

TABLE I
RECEIVED AND COMPUTED VALUES BY EACH SM

𝑆𝑀𝑖 Received Computed

𝑆𝑀1 𝒫𝑡2 , 𝑦1 𝑢1,1, 𝑙1,1, 𝑙2,1, 𝑙3,1, 𝑙4,1, 𝑦2

𝑆𝑀2 𝒫𝑡3 , 𝑙1,1, 𝑙2,1, 𝑙3,1, 𝑙4,1, 𝑦1, 𝑦2 𝑢1,2, 𝑢2,2, 𝑙2,2, 𝑙3,2, 𝑙4,2, 𝑦3

𝑆𝑀3 𝒫𝑡4 , 𝑙1,1, 𝑙2,1, 𝑙3,1, 𝑙4,1, 𝑢1,3, 𝑢2,3, 𝑢3,3, 𝑙3,3, 𝑙4,3, 𝑦4

𝑙2,2, 𝑙3,2, 𝑙4,2, 𝑦1, 𝑦2, 𝑦3

𝑆𝑀4 𝑙1,1, 𝑙2,1, 𝑙3,1, 𝑙4,1, 𝑙2,2, 𝑙3,2, 𝑢1,4, 𝑢2,4, 𝑢3,4, 𝑢4,4

𝑙4,2, 𝑙3,3, 𝑙4,3, 𝑦4

line 8). In so doing, no user’s private data will be revealed to
or recovered by anyone else.

2) One Example for LUD: Next, we take a simple example
to illustrate how to find the honesty coefficient vector, 𝒌, using
the LUD algorithm.

We consider a network of four SMs and one collector.
Before Procedure 1 can start running at each SM, two things
must be done. First, the collector, with itself being 𝑆𝑀0,
assigns an integer index 𝑗 in the range [1, 4] to each of the
SMs in the neighborhood, and transmits 𝒫𝑡𝑗+1

to 𝑆𝑀𝑗 where
1 ≤ 𝑗 ≤ 3. Second, each 𝑆𝑀𝑗 , including 𝑆𝑀0, records the
necessary energy consumption according to a starting time
and a sampling period 𝑆𝑃 specified by the collector. After
the collector chooses four time instances, at which the data
collected will be used to form an LSE, it then instructs the
SMs to start running Procedure 1.

Specifically, 𝑆𝑀0 (the collector) first calculates 𝑦1 = 𝒫𝑡1 ,
and transmits this value to 𝑆𝑀1, which computes 𝑢1,1, 𝑙1,1,
𝑙2,1, 𝑙3,1, 𝑙4,1, and 𝑦2. 𝑆𝑀1 then transmits the first column
of 𝑳, 𝑦1, and 𝑦2 to 𝑆𝑀2. With these data, 𝑆𝑀2 is able to
compute 𝑢1,2, 𝑢2,2, 𝑙2,2, 𝑙3,2, 𝑙4,2, and 𝑦3, and then transmits
the first two columns of 𝑳 and 𝑦1 to 𝑦3 to 𝑆𝑀3. 𝑆𝑀3 can thus
compute 𝑢1,3, 𝑢2,3, 𝑢3,3, 𝑙3,3, 𝑙4,3, and 𝑦4, and transmit the first
three columns of 𝑳 and 𝑦4 to 𝑆𝑀4. Finally, 𝑆𝑀4 can compute
𝑢1,4, 𝑢2,4, 𝑢3,4, and 𝑢4,4. Table I shows the information that
each node receives and computes in order to carry out the
LU decomposition. Note that 𝑆𝑀𝑗 records column 𝑗 of the
energy consumption data matrix 𝑷 and no energy consumption
recorded at other SMs are needed.

Moreover, once 𝑼 is computed, all that is left is to solve
the system 𝑼𝒌 = 𝒚 using Backward Substitution. To this end,
the collector instructs the SMs to start running Procedure 2.
In particular, 𝑆𝑀4 starts the backward substitution process
by calculating 𝑘4 = 𝑦4

𝑢4,4
. Then, 𝑆𝑀4 computes based on 𝑘4

the values needed by the other SMs, i.e., 𝑢3,4𝑘4, 𝑢2,4𝑘4, and
𝑢1,4𝑘4, and transmits them to 𝑆𝑀3. 𝑆𝑀4 will also compute
𝐸(𝑘4), its encrypted honesty coefficient, and send it to the
collector. Similarly, the other three SMs calculate their own
honesty coefficients based on the received quantities, and then
encrypt and send them to the collector as well.

B. The LUPD Algorithm

As mentioned before, LUD may not be numerically stable

609



Procedure 3 LU Decomposition with Partial Pivoting
Input: 𝑗 → 𝑆𝑀𝑗

1: 𝑼 = 𝑷

2: if received packet from 𝑆𝑀𝑗−1 or 𝑗 = 1 then
3: if 𝑗 ∕= 1 then
4: Receive columns 1, 2, ..., 𝑗 − 1 of 𝑳 and pivot

indexes
5: for 𝑓 = 1 to 𝑗 − 1 do
6: Update column 𝑗 of 𝑼 by interchanging the

𝑗th element of row 𝑓 with the 𝑗the element
of the pivot row of 𝑆𝑀𝑓

7: for 𝑟 = 𝑓 + 1 to 𝑛 do
8: 𝑢𝑟,𝑗 = 𝑢𝑟,𝑗 − 𝑙𝑟,𝑓𝑢𝑓,𝑗

9: end for
10: end for
11: end if
12: Compute 𝑙𝑗,𝑗 = 1
13: if 𝑗 ∕= 𝑛 then
14: Determine pivot rows in column 𝑗 of 𝑼
15: Interchange the 𝑗th element of row 𝑗 with the

𝑗th element of the pivot row in 𝑼 and 𝑳

16: for 𝑟 = 𝑗 + 1 to 𝑛 do
17: Compute 𝑙𝑟,𝑗 =

𝑢𝑟,𝑗

𝑢𝑗,𝑗

18: Compute 𝑢𝑟,𝑗 = 0
19: end for
20: Transmit columns 1, 2..., 𝑗 of 𝑳 and pivot row

indexes to 𝑆𝑀𝑗+1.
21: else
22: Notify the collector that 𝑳 and 𝑼 are available
23: Transmit all the 𝑛 pivot row indexes to 𝑆𝑀0

24: end if
25: end if

when 𝑛 is large. Here, we propose another algorithm, i.e.,
LUD with partial pivoting (LUPD), to address the stability
problem. Partial pivoting is to interchange rows of the matrix
𝑷 in order to place the element that has the greatest absolute
value in each column in the diagonal position of the matrix.
Thus, LUPD decomposition has the following form:

𝑬𝑷 = 𝑳𝑼 , (10)

where 𝑬 is the permutation matrix.
The LUPD algorithm consists of three procedures: LU

Decomposition with Partial Pivoting, Forward Substitution,
and Backward Substitution. Procedure 3 shows how LU de-
composition with partial pivoting works. Specifically, we first
let 𝑼 = 𝑷 . Then, 𝑆𝑀1 finds the maximum element in column
1 of 𝑼 , lets the pivot index of column 1 be the row this
element is in, interchanges this element with the element in
row 1 if it is not, and computes the first column of 𝑼 . 𝑆𝑀1

also computes the first column of 𝑳, and transmits the first
column together with the pivot index of column 1 to 𝑆𝑀2.
Note that in LUPD, we compute 𝑼 and 𝑳 in a different
way from that in LUD, as shown in Line 8 and Line 17 of
Procedure 3, respectively, which now allows partial pivoting

Procedure 4 Forward Substitution
Input: 𝑗 → 𝑆𝑀𝑗

1: if 𝑗 = 0 or 𝑆𝑀𝑗 receives packets from 𝑆𝑀𝑗−1 then
2: if 𝑗 = 0 then
3: Compute 𝑦1 = 𝒫𝑡1 and transmit 𝑦1 to 𝑆𝑀1

4: end if
5: if 1 ≤ 𝑗 ≤ 𝑛− 1 then
6: Compute 𝑦𝑗+1 as described in (8) using 𝑠𝑗−1 if

necessary
7: Transmit 𝑦𝑗+1 to 𝑆𝑀𝑗+1

8: Compute 𝑙𝑞,𝑗𝑦𝑗 for 𝑞 = 𝑗 + 1, 𝑗 + 2, ..., 𝑛

9: Compute 𝑠𝑗 =
∑𝑗

𝑞=1 𝑙𝑗+1,𝑞𝑦𝑞
10: Transmit 𝑠𝑗 to 𝑆𝑀𝑗+1

11: Transmit 𝑙𝑗+2,1𝑦1, ..., 𝑙𝑛,1𝑦1, ..., 𝑙𝑗+2,𝑗𝑦𝑗 , ...,
𝑙𝑛,𝑗𝑦𝑗 to 𝑆𝑀𝑗+1

12: end if
13: if 𝑗 = 𝑛 then
14: Notify the collector that 𝒚 is available
15: end if
16: end if

[16]. After receiving the data from 𝑆𝑀1, 𝑆𝑀2 repeats 𝑆𝑀1’s
row interchange, i.e., interchanging the element in column 2,
𝑆𝑀1’s pivot index row of 𝑼 with the element in column 2,
row 1 of 𝑼 . Then, 𝑆𝑀2 performs its own row interchange,
which is to interchange the maximum element in column 2
of 𝑼 with the second element in column 2 of 𝑼 , lets the
pivot index of column 2 be the row this maximum element
was in, and computes the second column of 𝑼 . After that,
𝑆𝑀2 computes the second column of 𝑳, and transmits the
first two columns of 𝑳 along with the pivot index of 𝑆𝑀1

and of 𝑆𝑀2 to 𝑆𝑀3. Finally, 𝑆𝑀𝑛 receives columns 1 to
𝑛 − 1 of 𝑳 and all the previous nodes’ pivot indexes from
𝑆𝑀𝑛−1, repeats all the previous row interchanges, performs
its own row interchange, and calculates column 𝑛 of 𝑼 . Note
that 𝑙𝑗,𝑗 = 1 for 1 ≤ 𝑗 ≤ 𝑛.

Moreover, due to (2), we need make the same row inter-
changes for 𝒫 as those for 𝑷 . Thus, we let 𝑆𝑀𝑛 sent all
the 𝑛 pivot row indexes to the collector 𝑆𝑀0, which then
performs the same row interchanges for 𝒫 . Now we can solve
for 𝒚 and 𝒌 according to (6) and (7), respectively. In particular,
since 𝒚 is computed according to (8), 𝒚 can only be computed
after Procedure 3 is finished, which is different from that in
LUD where 𝒚 can be computed at the same time as 𝑳 and
𝑼 . Therefore, we propose the Forward Substitution procedure
as shown in Procedure 4, to enable the smart meters to solve
for 𝒚 in a distributed way. Forward Substitution calculates 𝑦𝑗
according to (8), and works similar to Backward Substitution
except that it starts from 𝑆𝑀1. At last, after 𝒚 is available,
Back Substitution as described in Procedure 2 can be used to
solve for 𝒌.

Furthermore, the same as that in LUD, we can enable each
neighboring two smart meters, i.e., 𝑆𝑀𝑗 and 𝑆𝑀𝑗+1 where
1 ≤ 𝑗 ≤ 𝑛− 1, to establish a symmetric security key on their
own and encrypt the data transmitted in Procedure 2 (line 7
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and line 8) to protect users’ privacy.
Compared to the LUD algorithm, LUPD takes more time to

complete. This is because in LUPD the forward substitution
to calculate 𝒚 can only be carried out after 𝑳 and 𝑼 have
been obtained, while in LUD, 𝒚, 𝑳, and 𝑼 can be obtained at
the same time. On the other hand, LUPD is numerically stable
while LUD is not.

C. Variable Honesty Coefficients

In the above LUD and LUPD algorithms, we have only
considered that the honesty coefficient vector 𝒌 is a constant.
However, when an illegal user commits energy theft, it is
possible that the rate at which he/she steals energy is variable.
In other words, an illegal user can alter the smart meter in
such a way that it steals energy at different rates at different
times. Unfortunately, if 𝒌 changes in an LSE, the proposed
algorithms may not work well. Next, we design an adaptive
algorithm to address this problem.

We notice that when 𝒌 changes in an LSE, the proposed
LUD and LUPD algorithms will result in an honesty coef-
ficient vector, many of whose elements are not equal to 1.
Thus, when the collector gets the honesty coefficient vector 𝒌
and counts the number of elements that are not equal to 1, it
can infer by statistics whether it is possible to have this many
energy thieves in the network. If it is unlikely for this event to
happen, the collector can reduce the sampling period 𝑆𝑃 and
run the algorithms again, until the possibility of that event is
high and 𝒌 does not change any more.

We give a mathematical model as follows. Assume there are
𝑛 users in a serviced area and each of them commits energy
theft independently with the same probability 𝑝. Let 𝑋 denote
the total number of energy thieves in the neighborhood. Then,
𝑋 is a random variable, which has a Binomial distribution.
Thus, when the collector runs LUD/LUPD and obtains the
honesty coefficient vector 𝒌, it can find the number of elements
that are not equal to 1, which we denote by 𝑌 . Then, the
collector can calculate the probability that this event happens
as follows:

𝑃 (𝑋 = 𝑌 ) =
( 𝑛
𝑌

)
𝑝𝑌 (1− 𝑝)𝑛−𝑌 . (11)

In addition, in the case that each user 𝑗 commits energy theft
independently with a different probability 𝑝𝑗 , 𝑋 is also a ran-
dom variable, but its expectation becomes 𝔼[𝑋 ] =

∑𝑛

𝑗=1 𝑝𝑗 .
Recall the Chernoff bounds [17]:

∙ For any 𝛿 > 0,

𝑃 (𝑋 > (1 + 𝛿)𝔼[𝑋 ]) < 𝑒−𝔼[𝑋]𝑓(𝛿)

where 𝑓(𝛿) = (1 + 𝛿) log(1 + 𝛿)− 𝛿.
∙ For any 0 < 𝛿 < 1,

𝑃 (𝑋 < (1 − 𝛿)𝔼[𝑋 ]) < 𝑒−
1
2
𝛿2𝔼[𝑋].

Then, the collector can infer whether the obtained 𝒌 is true or
not by calculating

𝑃 (𝑋 ≥ 𝑌 ) < 𝑒−𝔼[𝑋]𝑓(𝛿) with 𝛿 = 𝑌/𝔼[𝑋 ]− 1 (12)

when 𝑌 > 𝔼[𝑋 ], and

𝑃 (𝑋 ≤ 𝑌 ) < 𝑒−
1
2
𝛿2𝔼[𝑋] with 𝛿 = 1− 𝑌/𝔼[𝑋 ] (13)

when 𝑌 < 𝐸[𝑋 ]. Besides, when 𝑌 = 𝐸[𝑋 ], we set 𝑃 (𝑋 =
𝑌 ) = 15.

Thus, if the estimated probability 𝑃 is lower than a threshold
𝑡ℎ, we reduce the sampling period 𝑆𝑃 by 𝑔 (𝑔 > 0), which
is a step variable, and run the LUD/LUPD algorithm again to
obtain another 𝒌. This process repeats until 𝑃 is no less than
the threshold and the obtained 𝒌 is the same as the previous
one. By then we consider the 𝒌 is true, i.e., the real honesty
coefficient vector in the network.

We finally present the adaptive LUD/LUPD algorithm in
Procedure 5, which can detect illegal users with variable
honesty coefficients.

Procedure 5 Adaptive LUD/LUPD Algorithm
1: repeat
2: The collector instructs all SMs to take 𝑛 samples with

a initial sampling period 𝑆𝑃
3: Run the LUD/LUPD algorithm
4: if The collector receives all elements in 𝒌 then
5: 𝑌 = the number of elements in 𝒌 unequal to 1,

i.e., the number of illegal SMs
6: end if
7: The collector calculates the probability that there are

𝑌 illegal users according to (11) or (12) or (13),
denoted by 𝑃 .

8: if 𝑃 < 𝑡ℎ (a threshold) or 𝑃 = 1 then
9: 𝑆𝑃 = 𝑆𝑃 − 𝑔 (𝑔 > 0 is a step variable)

10: end if
11: until 𝑃 ≥ 𝑡ℎ and 𝒌 does not change any more

V. SIMULATION RESULTS

We perform two series of simulations to evaluate the
performance of our privacy-preserving energy theft detection
algorithms LUD and LUPD. In the first part, we assume
that illegal users steal energy at a constant rate and thus
have constant honesty coefficients. In the second part, we
consider that illegal users have variable honesty coefficients.
We conduct simulations in Matlab R2010a. The simulation
results in the above two cases are presented in Section V-A
and Section V-B, respectively.

Besides, we generate users’ power consumption data, 𝑷 ,
based on a set of data from [18] and [19]. These two studies
conduct experiments in which both commercial and residential
users are metered every hour and every half-hour, respectively.
With these measurements, both studies provide typical daily
user load profiles for different days of the week and different
seasons of the year.

5As shown in Procedure 5, by setting 𝑃 (𝑋 = 𝑌 ) = 1 in this case, we will
run the LUD/LUPD/QRD algorithm again with a reduced sampling period. If
the obtained 𝒌 does not change any more, we consider it is the true honesty
coefficient vector we are looking for.
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Fig. 2. Elements of 𝒌 obtained by the LUD algorithm.

A. Constant Honesty Coefficients

We first perform simulations when illegal users steal energy
at a constant rate. In other words, each illegal SM chooses
a rate to steal energy and never changes this rate or stops
stealing, thus having a constant honesty coefficient.

We evaluate the performance of LUD, LUDP, and QRD,
when every user commits energy theft with a probability of
0.3 and there are totally 15, 30, and 50 users, respectively.
Each energy thief chooses a honesty coefficient uniformly and
randomly in [1.1, 10]. As shown in Fig. 2, the LUD algorithm
can work well when there are 15 and 30 users in total. In
particular, in Fig. 2(a) we can see that 6 users have an honesty
coefficient larger than 1. It means that these 6 SMs only record
a fraction of their consumed energy. Using these results, the
collector can easily identify the energy thieves and how much
less they have paid in their monthly bills. We can also observe
that the legal users have an honesty coefficient equal to 1 and
can be easily identified as well. Similar results are shown in
Fig. 2(b) when there are 30 users. Besides, we can also find
that LUDP and QRD can obtain the same results as LUD in
these two cases. Moreover, the results of LUD, LUDP, and
QRD when the number of users is 50 are presented in Fig.
3. In this case, the LUD algorithm is not stable. It finds 49
illegal users while in practice there are only 17 energy thefts.
In contrast, the LUDP and QRD algorithms can successfully
identify all the 17 illegal users.
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Fig. 3. Elements of 𝒌 obtained by the LUD and LUPD algorithms.

B. Variable Honesty Coefficients

We then conduct simulations when illegal users steal energy
at variable rates. We consider that each energy thief chooses a
new honesty coefficient uniformly and randomly in [1.1, 10]
each time after a certain period. we first consider that all the
users commit energy theft with the same probability 𝑝 = 0.3,
and then consider that each user commits energy theft with a
probability independently and randomly chosen between 0.3
and 0.7.

In particular, when all the users have the same cheating
probability 𝑝 = 0.3, we find that the adaptive LUD algorithm
is not stable when there are more than 25 users in the network.
The results are omitted due to space limitation. Besides, we
show the results of the adaptive LUDP algorithm in Fig.
4, when the number of users is equal to 30, 50, and 100,
respectively. We can see that all the energy thieves can be
found. Moreover, when each user commits energy theft with
a probability independently and randomly chosen between 0.3
and 0.7, we show the results of the adaptive LUDP algorithm
in Fig. 5, in the cases that the number of users is equal to 30,
50, and 100, respectively. We can find that in these cases, the
adaptive LUDP algorithm can also successfully and efficiently
identify those fraudulent users.

VI. CONCLUSION

In this paper, we have presented two algorithms, i.e., LUD
and LUPD, which can identify the users who are committing
energy theft in smart grids while preserve all users’ privacy.
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Fig. 4. Elements of 𝒌 obtained by the LUPD algorithms – constant cheating probability.
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Fig. 5. Elements of 𝒌 obtained by the LUPD algorithms – variable cheating probability.

The two algorithms are distributed and based on LU decom-
position. We can observe that no private data from the users
needs to be transmitted to other users or to the collector, thus
preserving users’ privacy. We also find that LUD might not
be stable in large-size networks while LUPD can. Extensive
simulation results show that fraudulent users can be detected
both when they commit energy theft at a constant rate and
when they steal energy at variable rates.
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