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APPENDIX A
ELGAMAL CRYPTOSYSTEM

ElGamal cryptosystem [1] is a semantically secure homo-
morphic cryptosystem based on the intractability of the
discrete logarithm problem in finite fields. In particular,
let p and q be two large strong prime numbers such
that p = 2q + 1. Let Gq denote a sufficiently large
multiplicative subgroup of Z∗p with order q. A user
chooses a random x ∈ Gq as the private key, and
y = gx mod p as the public key where g is a com-
mon generator of Gq . All the calculations are modulo-
p unless mentioned otherwise. A message m ∈ Gq for
the user is encrypted as Enc(m) = 〈α, β〉 = 〈gr,myr〉,
where r ∈ Gq is a local random number generated
by the encrypting party. The user can then decrypt the
message by calculating Dec(α, β) = β

αx = myr

(gr)x = m.
ElGamal cryptosystem is multiplicative homomorphic,
i.e., Dec(Enc(m1) · Enc(m2)) = Dec(〈gr1 · gr2 ,m1y

r1 ·
m2y

r2〉) = m1 · m2. Additive homomorphism can be
obtained with what is sometimes called “exponential”
ElGamal, in which encryption is performed as Enc(m) =
〈α, β〉 = 〈gr, gmyr〉 and decryption can be obtained by
Dec(α, β) = β

αx = gm. Thus, Dec(Enc(m1) · Enc(m2)) =
Dec(〈gr1 · gr2 , gm1yr1 · gm2yr2〉) = gm1+m2 . Note that
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since the decryption results in gm instead of m, it is
computationally intractable to obtain m from gm due to
the intractability of the discrete logarithm problem. The
proposed auction scheme employs exponential ElGamal
to utilize the additive homomorphic property, and only
needs to determine whether m is zero which can be
easily done.

APPENDIX B
ZERO KNOWLEDGE PROOFS

The Zero Knowledge Proof (ZKP), introduced by Gold-
wasser, Micali and Rackoff (GMR) [2], is an important
tool in cryptography. A prover can use a ZKP protocol to
prove the possession of certain information to a verifier
without revealing the very information. The absence
of a trusted central authority in a DOSN makes the
network inherently vulnerable to malicious users who
aim to fulfill their malicious intents and do not follow the
proposed auction protocol. Besides, the strong privacy
requirement in our schemes necessitates preserving bid-
ders’ anonymity and their bidding price privacy, which
further complicates the authenticity and enforcement
of correct protocol execution by all the participants. In
order to ensure the bidders follow the proposed auction
protocol correctly, we require all bidders (provers) to
prove to a bridge node (verifier, see Section 5 for details)
using ZKPs in different steps of the protocol. We describe
several ZKPs we will use in SPA as follows. All the
calculations are modulo-p unless mentioned otherwise.

B.1 Proof of Knowledge of A Discrete Logarithm
Schnorr [3] develops a ZKP that a prover (a bidder) can
use to prove the knowledge of x such that y = gx to a
verifier (a bridge node) who knows y and g.
• The bidder chooses a random r and sends z = gr to

the bridge node.
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• The bridge node sends a random challenge c to the
bidder.

• The bidder computes a = (r+ cx) mod q and sends
to the bridge node.

• The bridge node checks to see if ga = zyc.
If the equality holds, the bidder is able to prove to the
bridge node the knowledge of x such that y = gx without
disclosing x.

B.2 Proof of Equality of Two Discrete Logarithms
When a prover (a bidder) needs to prove that two values
(encryptions, say y1 = gx1 and y2 = gx2 ) are computed
using the same private key (x) to a verifier (a bridge
node who knows y1, y2, g1, g2), the protocol below [4]
can be employed to realize the zero-knowledge proof.
• The bidder chooses a random r and sends z1 = gr1

and z2 = gr2 to the bridge node.
• The bridge node sends a random challege c to the

bidder node.
• The bidder then computes a = (r + cx) mod q and

sends to the bridge node.
• The bridge node checks to see if ga1 = z1y

c
1 and ga2 =

z2y
c
2.

If both the equalities hold, the bridge node is convinced
that the same x is used to compute y1 and y2.

B.3 Proof That An Encrypted Value Decrypts to Ei-
ther 1 Or 0
In our private auction scheme (Section 5.3), a bidder
prepares a bidding vector by encrypting each element
(either 0 or 1) separately. While the actual bidding
price (and bidding vector) remains private to the bidder
throughout the auction, it is necessary to make sure the
bidding vector is prepared correctly in order to deter
any malicious bidder’s attempt to disrupt the protocol. A
bidder can use the protocol proposed by Cramer et al. [5]
to prove to the bridge node that his/her bidding vector
is composed of encryptions of m ∈ {0, 1}. Specifically,
let 〈α, β〉 = 〈gr, gmyr〉 be the ElGamal encryption of
message m.
• If m = 0, the bidder chooses r1, d1, w at random

and sends 〈α, β〉, a1 = gr1βd1 , b1 = yr1(α/g)d1 and
a2 = gw, b2 = yw to the bridge node.
If m = 1, the bidder chooses r2, d2, w at random
and sends 〈α, β〉, a1 = gw, b1 = yw, a2 = gr2βd2 , and
b2 = yr2αd2 to the bridge node.

• The bridge node sends a challenge c, chosen at
random, to the bidder node.

• If m = 0, the bidder sends d1, d2 = c− d1 mod q, r1,
and r2 = w − rd2 mod q to the bridge node.
If m = 1, the bidder sends d1 = c − d2 mod q, d2,
r1 = w − rd1 mod q, and r2 to the bridge node

• The bridge node checks whether c = d1 + d2 mod q
a1 = gr1βd1 , b1 = yr1(α/g)d1 , a2 = gr2βd2 , and b2 =
yr2αd2 .

If all the equalities hold, the bidder is able to prove that
the ciphertext decrypts to either 1 or 0.

APPENDIX C
THE DISTRIBUTED ADVERTISEMENT DISTRIBU-
TION ALGORITHM
Below (Algorithm 1) please find the detailed descriptions
of the distributed advertisement distribution algorithm.

Algorithm 1: Distributed Advertisement Distribution

aik ← H(Fi||Tk);
vc ← Current Node ID ;
if aik ∈ (predecessor(vc), vc] then

Send an ACK message back to SrcID and quit;
/* vc is the bridge node */

end
Store MessageID, SrcID pair;
SrcID ← vc ;
if (aik ∈ (vc, sucessor(vc)]) then

Forward advertisement message to sucessor(vc)
and quit;
/*sucessor(vc) is the bridge node*/

end
for (∀j|∃ecj ∈ E) do

if (aik ∈ (predecessor(vj), vj ]) then
Forward the advertisement packet to vj and
quit ;
/* Friend vj of vc is the bridge
node */

end
end
for (j = 2→ m) do

if (aik = j.finger(vc)) then
Forward the advertisement packet to
j.finger(vs) and quit;
/* j.finger(vc) is the bridge node */

end
end
vnext ← ∅ ;
for (j = 1→ m− 1) do

if aik ∈ (j.finger[vc], (j + 1).finger[vc]) then
vnext ← j.finger[vc];

end
end
if (vnext = ∅) then

vnext ← m.finger[vc] ;
end
for (∀j|∃ecj ∈ E) do

if (0 < (aik − vj) < (aik − vnext)) then
vnext ← vj ;

end
end
Forward the Advertisement Packet to vnext.

APPENDIX D
AN EXAMPLE FOR WINNING BIDDER DETERMI-
NATION
Below (Example 1) please find an example for winning
bidder determination with 4 bidders, in which X repre-
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Example 1 Suppose that the price vector given by a seller is p =
(
150 140 130 120 110 100

)ᵀ.
Assume that there are four bidders: v1, v2, v3, and v4, and their bidding prices are 140, 130, 120, and 110,
respectively. Therefore, b1 =

(
0 1 0 0 0 0

)ᵀ, b2 =
(
0 0 1 0 0 0

)ᵀ, b3 =
(
0 0 0 1 0 0

)ᵀ,
b4 =

(
0 0 0 0 1 0

)ᵀ, Then, we have

B̂ = b̂1+ b̂2+ b̂3+ b̂4 =


0
1
2
2
2
2

+


0
0
1
2
2
2

+


0
0
0
1
2
2

+


0
0
0
0
1
2

 =


0
1
3
5
7
8

, and P =




0
1
3
5
7
8

−

3
3
3
3
3
3



 ·

R(1)
R(2)
R(3)
R(4)
R(5)
R(6)

 =


X
X
0
X
X
X

.

Since we have P(3) = 0, the winning price is p(w) = p(3) = 130. According to (5), we get W1 =
(b̂1(3) − 2) · R1 = (2 − 2) · R1 = 0, W2 = (b̂2(3) − 2) · R2 = (1 − 2) · R2 = X, W3 = (b̂3(3) − 2) · R3 =
(0− 2) ·R3 = X, W4 = (b̂4(3)− 2) ·R4 = (0− 2) ·R4 = X . Thus, the winning bidder is v1.

sents non-zero random values.

APPENDIX E
PROOF OF THEOREM 1

Theorem 1: [Completeness] A legal node can always
be successfully authenticated.

Proof: Note that the bridge node can obtain the
public pseudo ID ρi from the certificate Ci and that
si = g̃1/ρi mod N . Thus, we have

yρi g̃−c ≡ (r̃sci )
ρi g̃−c ≡ r̃ρi g̃cg̃−c ≡ r̃ρi ≡ z mod N.

APPENDIX F
PROOF OF THEOREM 2
Theorem 2: [Soundness] An illegal bidder node who does
not have a valid si can only be successfully authenticated
with a negligible probability.

Proof: We observe that an illegal bidder may be able
to deceive the bridge node (verifier) if r̃ + c is divisible
by ρi and it sends z = g̃r̃ mod N and y = g̃(r̃+c)/ρi mod
N to the bridge node. The bridge node will accept the
proof because

yρi g̃−c ≡ (g̃(r̃+c)/ρi)ρi ≡ g̃r̃+c g̃−c ≡ z mod N.

However, the probability of this event is very low (∼
1/N ). For a sufficiently large N , e.g., a 1024-bit number,
this probability is negligible.

Next, we prove by contradiction that an illegal bid-
der, without a valid si, cannot increase this probability.
Specifically, to increase the probability of passing the
authentication, an illegal bidder needs to be able to
know y = (zg̃c)1/ρi so as to let the verification condition
hold. Suppose that the bidder is able to compute ρi-
th roots y′ and y′′ of zg̃c for two challenges c′ and c′′

(c′, c′′ ∈ ZN \ Z∗N ). Note that ρi is a prime, we have
gcd(ρi, c′ − c′′) = 1. Therefore, there always exist Bezout
coefficients m̃ and k̃ such that

ρim̃+ (c′ − c′′)k̃ = ±1 mod N

Thus, by conducting the following computation,(
g̃m
(
y′

y′′

)k̃)±1
≡

(
sρim̃i

(
y′

y′′

)k̃)±1
≡ (sρim̃i s

(c′−c′′)k̃
i )±1 ≡ si mod n

the bidder can obtain si. This, however, contradicts
with the assumption that the bidder does not know si
corresponding to ρi.

APPENDIX G
PROOF OF THEOREM 3
Theorem 3: If the bid from bidder vi is authentic, the fol-
lowing verification equations would hold: h(αik||mαik

) =

εαik and h(βik||mβik
) = εβik for any 1 ≤ k ≤ K.

Proof: We present the proof by dropping the su-
perscripts/subscripts of the subscripts in the notations
above for simplicity. Particularly, since mα = yρiα g̃

−εα =
(rαs

εα
i )

ρi g̃−εα = rρiα (sρii )εα g̃−εα = rρiα g̃
εα g̃−εα = rρiα = zα

(note that sρii = g̃diρi = g̃), we have h(α||mα) =
h(α||zα) = εα. Similarly, we can prove that mβ = zβ
and hence h(β||mβ) = h(β||zβ) = εβ .

APPENDIX H
PROOF OF THEOREM 4
Theorem 4: [Soundness] An illegal bidder, who generates
a signature without a valid si, can only pass the verifi-
cation at the bridge node with a negligible probability.

Proof: Consider an illegal bidder vi who signs
his/her bid vector Enc(bik) = 〈αik, βik〉 (1 ≤ k ≤ K)
by following the above anonymous signature scheme.
We can see from Theorem 2 that the illegal bidder
can deceive the bridge node, i.e., rρi

αik
= yρi

αik
g̃
−ε

αi
k and

rρi
βik

= yρi
βik
g̃
−ε

βi
k , if for each element Enc(bik) = 〈αik, βik〉,

the illegal bidder sends zαik = g̃
r
αi
k , yαik = g̃

(r
αi
k
+ε

αi
k
)/ρi ,

and zβik = g̃
r
βi
k , yβik = g̃

(r
βi
k
+ε

βi
k
)/ρi where (rαik+εαik) and

(rβik + εβik) are divisible by ρi. However, the probability
of this event is very low ≈ 1/N , and the probability
of such events for the whole bid vector is � 1/N and



4

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 0  2000  4000  6000  8000  10000
No. of  Bidders (n)

Bidder node in SPA
Bridge node in SPA

Bidder node in Brandt [8]

(a) Computation Cost (ms)

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 0  2000  4000  6000  8000  10000
No. of Bidders (n)

Bidder node in SPA
Bidder node in Brandt [8]

(b) Communication Cost (bits)

Fig. 1. Computation and communication costs when K=500
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Fig. 2. Computation and communication costs when n = 10000.

is negligible. Similarly, following the proof in Theorem
2, we can show that a malicious bidder is unable to
increase this probability. Thus, a signature generated by
an illegal bidder without a valid si has only a negligible
probability of being successfully verified by the bridge
node.

APPENDIX I
PERFORMANCE EVALUATION

This section details the experiment results for the compu-
tation, communication, storage costs, and auction utility
of our proposed protocol, which are shown in Fig. 1, Fig.
2, Fig. 3, Fig. 4, respectively.

REFERENCES

[1] T. Elgamal, “A Public Key Cryptosystem and a Signature Scheme
based on Discrete Logarithms,” IEEE Transactions on Information
Theory, vol. 31, no. 4, pp. 469–472, 1985.

[2] O. Goldreich, S. Micali, and A. Wigderson, “How to play ANY
mental game,” in Proceedings of the nineteenth annual ACM sympo-
sium on Theory of computing, New York, NY, USA, 1987.

[3] C. Schnorr, “Efficient signature generation by smart cards,” Journal
of Cryptology, vol. 4, no. 3, pp. 161–174, 1991.

[4] D. Chaum and T. P. Pedersen, “Wallet databases with observers,”
in Proceedings of the 12th Annual International Cryptology Conference
on Advances in Cryptology, 1993.

[5] R. Cramer, R. Gennaro, and B. Schoenmakers, “A secure and
optimally efficient multi-authority election scheme,” in Proceedings
of the EUROCRYPT, 1997.



5

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 1x10
10

 1x10
11

 1x10
12

 1x10
13

 1x10
14

 1x10
15

 2000  4000  6000  8000  10000
No. of Bidders (n)

Bidder node in SPA
Bridge node in SPA

Bidder node in Brandt [8]

(a) Storage cost (bits) when K = 500

 0
 2000

 4000
 6000

 8000
 10000

 0  2000 4000 6000 8000 10000

 10000

 1x10
6

 1x10
8

 1x10
10

 1x10
12

 1x10
14

 1x10
16

Bidder node in SPA
Bridge node in SPA

Bidder node in Brandt [8]

No. of Bidders (n) Price Vector Size (k)

(b) Storage cost (bits) when both n and K vary

Fig. 3. Storage cost

0

100

200

300

400

500

0 20 40 60 80 100

No. of Runs

Winning Bidder’s Utility

Losing Bidders’ Utility

(a) Bidders’ Utility

3000

4000

5000

6000

7000

8000

9000

10000

0 100 200 300 400 500

No. of Bidders

(b) Seller’s Average Revenue

Fig. 4. Auction Utility


