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Privacy-Preserving Energy Theft Detection in
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Abstract—Energy theft is a notorious problem in electric power
systems, which causes great economic losses and threatens the
reliability of the power grid. Recently, the Smart Grid has been
proposed as the next-generation power system to modernize the
current grid and improve its efficiency, sustainability, and secu-
rity. Key technologies of the Smart Grid include smart meters,
which allow system operators to collect real-time power consump-
tion data from users, and microgrids, which allow users to own
and control renewable resources. However, the Smart Grid is
vulnerable to cyber attacks, thus making stealing energy much
easier in it. Most existing energy theft detection schemes require
the collection of real-time power consumption data from users,
i.e., users’ load profiles, which violates their privacy. In this paper,
we first propose a centralized energy theft detection algorithm
utilizing the Kalman filter, called SEK. It can efficiently identify
the energy thieves but cannot protect users’ privacy. Then, based
on SEK, we develop a privacy-preserving energy theft detection
algorithm called PPBE, which privately finds the energy thieves
by decomposing the Kalman filter into two parallel and loosely
coupled filters. Finally, we conduct thorough privacy analysis and
extensive simulations to validate our proposed algorithms.
Index Terms—Energy theft, microgrid, privacy, state estimation.

I. INTRODUCTION

E NERGY theft is a notorious problem in electric power
systems and has serious implications for both utility com-

panies and legitimate users. Particularly, in the U.S. and Canada,
it is estimated that utility companies loose billions of dollars in
revenue every year [1], [2], while in developing countries en-
ergy theft can amount to 50% of the total energy delivered [3].
Energy theft also leads to excessive energy consumption which
may cause equipment malfunction or damage [4], and often en-
ables other criminal activities, such as illegal production of con-
trolled substances [2]. Besides, utility companies usually amor-
tize energy theft losses by increasing energy rates on legitimate
users.
Recently, the Smart Grid has been proposed as the next-gen-

eration power gird to modernize the current electric gird and

Manuscript receivedMarch 11, 2014; revised August 19, 2014 and December
29, 2014; accepted February 10, 2015. Date of publication April 16, 2015; date
of current version February 17, 2016. This work was supported in part by the
U.S. National Science Foundation under grants CNS-1343220, CNS-1149786,
and ECCS-1128768, and in part by the Pacific Northwest National Laboratory
under U.S. Department of Energy Contract DE-AC05-76RL01830. Paper no.
TPWRS-00346-2014.
The authors are with the Department of Electrical and Computer Engi-

neering, Mississippi State University, Mississippi State, MS 39762 USA
(e-mail: sas573@msstate.edu; li@ece.msstate.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TPWRS.2015.2406311

improve its efficiency, reliability, and security. Especially, in
the smart grid, traditional mechanical meters are replaced with
cyber-physical devices, usually called “smart meters”. Another
important feature of the Smart Grid is microgrids, where dis-
tributed generators, energy storage devices, and energy loads,
typically within a distribution network, are capable of oper-
ating independently (i.e., in island mode) and also as part of
the macrogrid (i.e., in grid-connected mode). Microgrids reduce
transmission power losses and alleviate network congestion by
bringing generation closer to the load and allowing users to sell
energy back to the grid. However, in the Smart Grid, particu-
larly in microgrids, energy thieves can easily launch cyber at-
tacks against smart meters [5]. They can not only lie about their
energy consumption, but also demand illegitimate payments by
submitting fraudulent energy production reports. For example,
in Virginia, Danville Utilities reports a growing problem with
people tampering with smart meters [6]. It is noticeable that en-
ergy theft is much easier to commit in microgrids, and thus a
much more serious problem in smart grids than in traditional
power grids which needs to be carefully addressed.
Some research has been conducted to investigate the energy

theft problem in smart grids.McLaughlin et al. [7] collect cyber-
intrusion and physical-intrusion logs, and analyze users' load
profiles using a data mining technique called non-intrusive load
monitoring (NILM). The idea is to fuse the information using
an attack graph based fusion algorithm and identify the possible
energy thieves with a minimum number of false positives. Cár-
denas et al. [8] propose a statistical anomaly detection scheme
by modeling a game between a utility company and the fraudu-
lent users. The objective of the utility company is to maximize
its profit and minimize the cost of detecting pirate users, while
the objective of the energy thieves is to minimize the likelihood
of being detected subject to a constraint related to the amount
of stolen energy. Mashima and Cárdenas [9] develop a threat
model and several metrics to evaluate the accuracy of anomaly
detectors. Pereira et al. [10] collect fine-grained load profiles
from users' smart meters and apply a neural network classifier
using a technique called charged system search. Huang et al.
[11] propose a scheme that first finds out a fraudulent user's
transformer, and then tries to identify the particular fraudulent
user by analyzing the energy consumption variance of all the
users connected to the transformer. Weckx et al. [12] develop
a linear model for a distribution network, and can find energy
thieves only if all the voltage measurements and some initial
power measurements can be trusted, i.e., not tampered by the
energy thieves. Unfortunately, all these techniques have low de-
tection rates and need to manage large amounts of energy con-
sumption data from users.
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More importantly, notice that all the above works [7]–[13]
require the system operators to collect private information from
their users, i.e., fine-grained load-profiles. However, the release
of such data to system operators poses a serious risk to users'
privacy [14]. In particular, residential users' load profiles can re-
veal their daily routines, electronic appliances, and medical de-
vices used in their houses, and even whether any alarm system
is present. This information is valuable to some third parties.
For instance, burglars can use daily routine and alarm infor-
mation to select the most vulnerable targets. Insurance com-
panies may adjust users' premiums based on information ex-
tracted from load-profiles [15]. Marketing companies may con-
duct unsolicited directed advertising based on users' appliances,
daily routines, etc. On the other hand, industrial users' load pro-
files contain proprietary information about equipments and lo-
gistics [16]. This information represents a competitive advan-
tage to other companies that may want to mimic the industrial
processes or gain insight into the operations. For example, sim-
ilarly to that in a house, the amount, type and operation time of
machinery used in a production plant can be revealed through
its load-profiles, which can help competitors reproduce propri-
etary processes and products.
Although there exist some works studying privacy in smart

grids such as [17]–[19], they cannot address the privacy issues
in energy theft detection. In our previous works [20], [21], we
propose several privacy-preserving energy theft detection al-
gorithms utilizing distributed matrix decomposition. However,
these approaches assume that power line losses are known,
which in practice may be difficult to obtain. In this paper, we
relax this assumption and propose a new state estimation based
energy theft detection scheme that can successfully identify
pirate users in a microgrid while preserving users' privacy. Our
main idea is to model the amount of stolen energy by a smart
meter as a measurement bias and use optimal state estimation
techniques to solve for all the meters' biases. Thus, a zero bias
indicates a faithful meter, and a non-zero one identifies a pirate
meter.
Specifically, we first design a centralized state estimation al-

gorithm based on the Kalman filter, called SEK. This algorithm
is capable of identifying energy thieves by employing a cen-
tralized Kalman filter, but requires smart meters to reveal users'
real-time measurements to the system operator. Then, based on
the SEK algorithm, we develop a privacy-preserving bias es-
timation algorithm, called PPBE, that works in a distributed
manner. In particular, this algorithm privately estimates the bi-
ases by decomposing the previous Kalman filter into two par-
allel and loosely-coupled filters. One filter, oblivious to the bi-
ases, estimates the state variable vector which consists of power
line currents, while the other filter estimates the bias vector. We
call them the bias-ignorant filter and the bias filter, respectively.
The smart meter network computes the bias-ignorant filter in
a private and distributed manner, while the microgrid operator,
based on the bias-ignorant filter's residuals, carries out the bias
filter. The separation of the bias-ignorant state estimation from
the bias estimation hides users' measurements from the system
operator and allows for a distributed algorithm, thus protecting
users' private energy consumption information. Moreover, such
a decomposed filter design also makes PPBE converge faster

Fig. 1. Architecture for a radial microgrid.

and have better numerical stability than SEK since it involves
the computations of matrices of smaller sizes.
In addition, we formally analyze the privacy of the proposed

algorithm, and show that each users' privacy can be well pro-
tected from the microgrid operator, other users, and eavesdrop-
pers as well. We also conduct extensive simulations to evaluate
the performance of our algorithms and investigate the impact of
system parameter uncertainty, i.e., uncertain power line param-
eters, on our algorithms.
The rest of the paper is organized as follows. Section II intro-

duces the considered microgrid architecture, our mathematical
models for power distribution and energy theft, and the
threat model. In Section III we describe in detail our energy
theft detection algorithms. We conduct privacy analysis in
Section IV and simulations in Section V, respectively, to eval-
uate the performance of our algorithms. We finally conclude
this paper in Section VI.

II. SYSTEM MODEL

A. Microgrid Architecture

As shown in Fig. 1, we consider an electric microgrid (MG)
consisting of a set of buses equipped with
distributed generations (DGs), and a set of line segments

which connect the buses together and are used
to model the power lines and transformers in the network. We
assume a radial system denoted by graph , where
buses are the vertices with bus 0 being the root, and line seg-
ments are the edges (note that in this case ). Particularly,
bus 0 represents the substation which serves as the intercon-
nection between the macrogrid and the MG. It is operated by a
third-party, called the MG operator (e.g., a utility company, or
a community manager).
Besides, smart meters are installed on user buses to take

power, current, and voltage measurements [22], [23] and are
able to communicate with each other by forming a multihop
communication network [24]. The MG operator controls a
network device to engage in two-way communications with
the smart meter network, and performs monitoring and control
actions such as state estimation, billing, and demand response.
In this paper, we leverage the measurements and communica-
tion capabilities of smart meters to detect energy thieves in a
privacy-preserving manner.



SALINAS AND LI: PRIVACY-PRESERVING ENERGY THEFT DETECTION IN MICROGRIDS 885

Fig. 2. Three-phase line model.

B. Power Network Model for Microgrids

In what follows, we model the currents and voltages in the
MG. Specifically, as shown in Fig. 2, suppose that user

is connected to the power grid through a three-phase,
bi-directional connection at bus , which it employs to serve its
load demand and supply the MG with energy generated by its
DG. Thus, we can calculate the three-phase voltage at bus with
respect to the upstream node, bus , using Kirchoff's voltage
law [25]:

(1)

where ( denote the phases) models the
impact of on due to the impedance of the line seg-
ment between bus and bus (denoted by ), 's are
the elements of the line segment's impedance matrix,

is the three-phase voltage vector at bus , and
is the three-phase current vector arriving at

bus , respectively. We assume that power lines are less than
one mile long, and thus shunt admittance can be neglected. (1)
can also be rewritten in matrix form as follows:

(2)

Recall that line segments represent power lines and trans-
formers. For a power line segment , matrix is equal to
the identity matrix. For a transformer line segment
can be calculated as

(3)

where is the turns ratio of the transformer, and
depends on the transformer's connection type (e.g.,

delta-grounded wye, wye-delta).
In practice, there is rarely more than one transformer between

substations and meters. When there is one transformer on the
path between bus 0 and bus , say in the line segment between

bus (closer to bus 0) and bus (closer to bus ), (2) can be
further rewritten in the following:

(4)

where is the set of all the buses on the path from bus 0 to
bus (excluding bus 0), is the set of all the buses on the
path from bus to bus is the upstream node of , and is
the upstream node of , respectively. In the case that there is no
transformer between bus 0 and bus , then is equal to the
identity matrix, contains the set of all the buses on the path
from bus 0 to bus (excluding bus 0), and is empty. Note
that we assume the voltage and current at the substation bus are
constant. Besides, the MG operator is able to obtain very ac-
curate power line parameters using signal injection techniques
[26], or by collecting power measurements from the smart me-
ters [27]. Previous works like [11] on state estimation in power
systems make similar assumptions that the impedance parame-
ters are accurate. In addition, the MG operator also makes the
power line parameters available to the smart meters [28].
Moreover, the three-phase load current consumed or pro-

duced at bus can be calculated according to Kirchoff's current
law as follows:

(5)

where is the current arriving to bus and are the set
of downstream buses of bus connected by power lines and
that connected by transformer line segments, respectively. In
addition, matrix is as follows:

where depends on the transformer's connec-
tion type.
In addition, the power consumed by the load at bus is related

to the load current as follows:

(6)

where and are the three-phase real and reactive power
consumption vectors at bus , respectively. The operator de-
notes the complex conjugate operation.

C. Compromised Measurement Model
The MG operator instructs smart meters to take and report

synchronized measurements at specified time instances to facil-
itate energy theft detection. The objective of a dishonest user is
to steal energy but not get caught. To that end, it needs to manip-
ulate its measurements in such a way that its power, current, and
voltage reports are consistent with each other. In this paper, we
assume that energy thieves are very powerful, i.e., they know
all the system parameters [28] and are able to compromise all
functions of their smart meters, including measurement taking
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and reporting, which makes energy theft detection a very chal-
lenging problem.
Denote by the current that an energy thief at bus

intends to steal, which we call “the current measurement bias”
controlled by the energy thief. Then, the load measurement at
bus , denoted by , is

(7)

Note that an honest user 's load measurement is given by
, since for an honest user.
Besides, the energy thief has to tamper its voltage

measurement as well in order not to be easily detected. The
reason is that if the energy thief does not, all true currents can
be computed based on (2) and compared to the reported ones,
making itself very easy to be detected. Thus, by pretending that
the incoming current is instead of , according to
(2) the energy thief can set its voltage measurement to be

(8)

Clearly, an honest user's voltage measurement is .

D. Threat Model
Users' real-time power consumption data, including voltage

and current measurements, can reveal their private information.
In this study, we consider that there are three kinds of entities
who may attempt to obtain a user's (or a smart meter's) private
data: the MG operator, other users (or other smart meters), and
eavesdroppers. Besides, we consider that the MG operator and
smart meters work in the semi-honest mode, i.e., they faithfully
and correctly execute the system protocol, but are curious about
other users' privacy.

E. Paillier Cryptosystem
Paillier designed an efficient asymmetric cryptosystem,

called Paillier cryptosystem [29], based on decisional com-
posite residuosity assumption. In particular, letting
denote the encryption function of the Paillier scheme, we have

. The Paillier cryptosystem
is semantically secure for sufficiently large public keys, which
means that it is infeasible for a computationally bounded
adversary to derive significant information about a message
(plaintext) when given only its ciphertext and the corresponding
public key.

III. OPTIMAL STATE ESTIMATION FOR ENERGY
THEFT DETECTION

In this section, we propose state estimation algorithms to
find measurement biases, which can be used to identify energy
thieves as explained in Section II-C, based on voltage and
current observations.

A. State Estimation With the Kalman Filter
The Kalman filter [30] recursively estimates the state of a

process in a way that minimizes the mean square estimation
error. In the following, we present a centralized state estima-
tion algorithm using the Kalman filter, called SEK, to find line
current and bias estimates simultaneously without considering
users' privacy.
Recall that we denote the voltage at the substation by . We

define an augmented state vector of line segment currents and
biases as . Then, the state
equation of vector can be modeled as follows:

(9)

where is the time slot index, and is zero-mean white
process noise with covariance matrix .
Besides, the vector of current and voltage measurements, de-

noted by , can be
expressed as follows:

(10)

where is a function that determines the measurement
vector given the system state variable vector according to
(7) and (8), and is a measurement error vector, the elements
of which are three-phase measurement error vectors that are
independent of each other. We assume that is zero-mean
white measurement noise with covariance matrix , i.e.,

. We denote the diagonal elements in by for
.

We can see from (7) and (8) that (10) is linear and can be
expressed as

(11)

where matrix is the Jacobian matrix of with respect
to and can be calculated as follows (note that

):

...
...

...
...

...
. . .

...

...
...

...
...

...
. . .

...

The first two rows are related to and , where the partial
derivatives and are equal to (a 3 3 iden-
tity matrix) and the rest elements are equal to zero, since and

are directly measured by the MG operator.
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The rows in the middle section of correspond to load
current measurements, where the elements are calculated by
taking the first order partial derivative of with respect to
or , i.e.,

(12)

(13)

Here, is a 3 3 identity matrix, and is a 3 3 zero matrix.
The entries in the bottom section of are obtained by

taking the first-order partial derivative of voltage measurements
with respect to state variables and , i.e.,

(14)

(15)

Consequently, the MG operator can find the energy thieves as
follows.
First, the MG operator collects smart meters' measurement

vector .
Second, it applies the Kalman filter to find the state estimate
at time . Particularly, the Kalman filter has two

parts: time (or a priori) update and measurement (or a poste-
riori) update. In the time update part, the MG operator predicts
the state at time , i.e.,

(16)

where is the state estimate at time , and is set to
the expected value of , i.e., , for example, based on the
average historical power consumption data. It also finds the a
priori estimation error covariance matrix ,
where is the a posteriori estimation error covariance ma-
trix at time . Note that the initial estimation error covariance
matrix can be calculated as ,
where can be randomly selected.
In its measurement update part, the MG operator employs

the available measurements at time to correct the time update
estimate, i.e.,

(17)

where the gain matrix is updated as
. Such a can min-

imize the a posteriori estimation error covariance
[31], which can be updated as

. Note that is the identity matrix.
The iteration continues until the mean of the diagonal values in

, i.e., the estimate error variances, is less than a convergence
parameter .
Third, the system operator examines bias estimates (for

any ) and determines that users with
greater than a parameter are energy thieves. This parameter
is set to a multiple of the standard deviation of the largest bias
estimate error, i.e.,

(18)

where is a positive integer, and is the
maximum of the values in the diagonal of that correspond
to bias estimates.

B. Privacy-Preserving Bias Estimation

Although we can find energy users' biases ( 's) and identify
energy thieves using the previous SEK algorithm, the system
operator needs to obtain energy users' load current and voltage
measurements as shown in (17), which is a serious breach
to their privacy. In the following, we develop a privacy-pre-
serving bias estimation algorithm called PPBE, that can find
energy thieves while preserving users' privacy. In particular,
the proposed algorithm protects users' measurements and state
estimates from the system operator and other users in the MG.
Our main idea is to privately estimate by decom-
posing the previous Kalman filter into two parallel and loosely
coupled filters. One filter, oblivious to the biases, estimates
the state variable vector, while the other filter estimates the
bias vector. We call them the bias-ignorant filter and the bias
filter, respectively. The smart meter network computes the
bias-ignorant filter in a private and distributed manner, while
the MG operator, based on the bias-ignorant filter's residuals,
carries out the bias filter.
Denote by the state variable vector of the substa-

tion's voltage and line segment currents at time , i.e.,
, and by the measurement bias

vector at time , i.e., . Similar to that in
our SEK algorithm, the state has the following dynamics:

(19)

where is zero-mean white process noise with constant co-
variance matrix . Besides, we assume that the bias vector is
independent of the state vector and a constant,1 i.e., .
Thus, the measurement vector can be modeled as

(20)

where is zero-mean white measurement noise with con-
stant covariance matrix . Note that the first component is
bias-ignorant while the second component is only related to

1Note that we can sample the measurements at a high frequency. Thus, the
sampled data in a short period can be used for conducting the proposed algo-
rithm, during which the bias vector remains a constant.
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biases. Besides, is the Jacobian matrix of regarding ,
i.e.,

...
...

...
...

...

...
...

...
...

...

The first two rows correspond to and , while the rest of
the elements are that same as those defined in (12) and (14). In
addition, is as follows:

...
...

...

...
...

...

whose elements are defined in (13) and (15). In the following,
we drop the time index from and because they are con-
stant.
1) Bias-Ignorant Filter: The bias-ignorant filter is based on

the Kalman filter. In particular, the bias-ignorant filter estimates
line segment currents that evolve according to the stochastic
difference equation (19) and assumes measurements (20) are
bias-free, i.e., . The noise processes and are as-
sumed to be independent of each other.
Specifically, the bias-ignorant filter first initializes by ran-

domly selecting , setting , and the initial estimate
error covariance matrix to a large symmetric matrix.
Then, the bias-ignorant filter recursively computes the time

updates and measurement updates. In particular, the filter pre-
dicts the state at time , i.e., , and then adjusts the
prediction using the measurements at time as follows:

(21)

where is the measurement residual vector,
and the bias-ignorant gain matrix is

(22)

Besides, the bias-ignorant error covariancematrix is updated
as follows:

(23)

where . The bias-ignorant filter ends when the
mean of the diagonal values of is less than the convergence
parameter .

Note that according to the above, each smart meter would
need to obtain estimates 's from all the other smart meters
to calculate residuals . Directly sharing such data in plain-
text with other smart meters could compromise users' privacy.
In particular, recall that all the smart meters know the measure-
ment matrix , and as we will explain in the following section,
the system operator receives to find bias estimates. Thus, a
threatening entity may obtain users' private power consumption
by first solving for in the residual, i.e., ,
and then using the result to calculate in (6). There-
fore, in the following we design a private vector multiplication
scheme, which encrypts and aggregates privacy-sensitive data
and allows each smart meter to compute or update , and

by itself without knowing other smart meters' private data.
Specifically, notice that smart meter needs to compute the

residuals shown as follows:

(24)

where indicates that smart meter computes the
residuals for its current and voltage measurements, respectively.
In the second term of (24), we can see that smart meter needs
to aggregate the weighted elements of . In order to protect
users' privacy, we need to keep each bias-ignorant estimate
known to smart meter only.
Denote the second term in (24) by for

. To prevent smart meter from knowing smart
meter 's private data , we let smart meter locally compute

, and encrypt it for transmissions, i.e.,
, where denotes Paillier encryption with smart

meter 's public key. However, transmitting directly to
smart meter would still reveal because is known to all
smart meters. Thus, we conduct an in-network aggregation as in
[19].
In particular, the MG operator's network device, i.e., smart

meter 0, acts as the aggregator and computes
for each smart meter . It works as follows. Smart meter 0 first
builds a logical binary tree of smart meters as shown in Fig. 3,
with itself being the root. Then, it instructs each smart meter
to collect its children nodes' (say, smart meters and ) aggre-
gated data, say and , and multiply them with its
own . Particularly, smart meter 's aggregated data en-
crypted with smart meter 's public key, denoted by , can
be obtained according to the properties of Paillier encryption,
i.e.,

Notice that if smart meters and are leaf nodes, then we
have and . To prevent smart meter from
knowing its children nodes' private data when any of them is a
leaf node in the binary tree, we always let one of smart meter 's
children nodes send its data, say , to the other, who com-
putes and sends it to smart meter . Smart meter
simply forwards its children's aggregated data to its parent
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node without incorporating its own data. The last aggregation
is done by smart meter 0, which then transmits to smart
meter , who decrypts and computes .
Finally, after obtaining , smart meter can compute the

residuals for locally, i.e., , and
update . It also transmits to the MG operator so that it can
estimate the bias vector through a bias filter, which will be in-
troduced next.
2) Bias Filter: Friedland [32] showed that the bias estimate

can be conducted separately from the bias-ignorant state esti-
mate by employing a Kalman-like filter and using bias-ignorant
measurement residuals as follows:

where is set to a zero matrix, , the bias
filter's gain matrix is , and
matrix is

where is set to a large symmetric matrix, analogously to .
The MG operator may compute the bias-ignorant filter's gain

matrix as shown in (22). Besides, the MG operator can com-
pute in the same way as for SEK in Section III-A and set the
same threshold as in (18).
To summarize, the PPBE algorithm is carried out by the net-

work of smart meters and the MG operator as follows. First,
smart meters take voltage and load current measurements to
form the vector , and initialize their local state estimates 's.
The MG operator initializes the matrices and transmits the
th row of to smart meter . Then, the smart meters find
the residuals and the bias-ignorant current estimates , and
transmit the residuals to the MG operator. After that, the MG
operator finds the bias estimates , and updates the gain ma-
trix . The iteration continues until the mean of the diagonal
values of is less than a convergence parameter .

C. Convergence of SEK and PPBE
Notice that in the proposed SEK and PPBE algorithms, the

state vector, i.e., the voltage at the substation, line segment cur-
rents, and biases, are assumed to remain constant before the al-
gorithms finish.We contend that this is reasonable. In particular,
as will be shown in the simulations, the PPBE (SEK) algorithm
converges in as few as 5 iterations in IEEE 13-bus and
IEEE 123-bus test systems, which only needs the measurements
in 5 s given that the smart meters can take measure-
ments once per second as shown in [33], [34]. It is fair to as-
sume that the state vector is constant during this period, since
real-world data collected from individual users in [33] and [34]
shows that power demand remains constant for up to 2 min, and
some works like [35] assume that the voltages and currents re-
main constants for up to 10 min. Moreover, although we exploit
the capabilities of smart meters to take real-time measurements,
the proposed algorithms are not required to be carried out in
real-time. To be more prominent, if the communication network

Fig. 3. Example of a logical binary tree for residual update.

Fig. 4. IEEE 13-bus test system.

Fig. 5. IEEE 123-bus test system.

is congested, the MG operator may instruct the smart meters to
take measurements and defer the computation of the proposed
algorithms to a later time with less data traffic.

IV. PRIVACY ANALYSIS

As described in the threat model, there could be three entities
which may compromise users' privacy: the MG operator, com-
promised smart meters, and eavesdroppers. In this section, we
analyze how each of the threatening entities may attempt to ob-
tain users' private information, including their load current and
voltage measurements, and how our privacy-preserving energy
theft algorithm prevents such attacks.
The MG Operator: according to our privacy-preserving en-

ergy theft detection algorithm in Section III-B, the MG oper-
ator receives the residual vector from the smart meters. Re-
call that it can try to recover users' measurements by calculating
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Fig. 6. Energy theft detection in the IEEE 13-bus system using SEK. (a) Bias estimation using SEK under . (b) Bias estimation using SEK under
. (c) Estimate of bias 22 ( ) using SEK under .

Fig. 7. Energy theft detection in the IEEE 13-bus system using PPBE. (a) Bias estimation using PPBE under . (b) Bias estimation using PPBE under
. (c) Estimate of bias 22 ( ) using PPBE under .

. However, although the MG operator knows
and , it does not know and hence cannot obtain .

Besides, although the MG operator employs the bias filter to get
the bias estimate , it can only learn whether a user is honest or
not. It cannot infer any users' private energy consumption data

or from .
Smart Meters: notice that in the bias ignorant filter, smart

meter needs to transmit its bias-ignorant state estimate multi-
plied by the corresponding elements of the system matrix, i.e.,

for , to the MG operator's network device
for smart meter 's aggregation. Since such data is encrypted by
smart meter 's public key and aggregated in the network, any
other smart meter cannot know in (24). Thus,
even if any other smart meter knows , it cannot figure out

using (24).
Eavesdroppers: similarly, even if some eavesdroppers can

overhear all the communications in the system, they would only
know and , and thus cannot obtain users' private data
or .

V. SIMULATION RESULTS
In this section, we evaluate the performances of our pro-

posed SEK and PPBE algorithms. We analyze their success
rates, which we define as the ratio of the number of users cor-
rectly identified as thieves or honest users to the total number of
users in the system, and the convergence performances under
different measurement error standard deviations. We also study
the impact of line impedance uncertainty on the success rates of
our proposed PPBE algorithm.

In our simulations, we employ our algorithms to find energy
thieves in the IEEE 13-bus and the IEEE 123-bus distribution
test systems shown in Figs. 4 and 5, respectively [36]. In the
IEEE 13-bus system, we ignore the voltage regulator between
buses 632 and 650, and consider the switch between buses 671
and 692 to be closed. In the IEEE 123-bus system, we also ig-
nore the voltage regulators and consider closed switches be-
tween buses 150–149, 13–152, 54–94, and 18–135. Both sys-
tems are radial networks with unbalanced loads, which makes
them realistic scenarios for a microgrid. To generate the true
state of the system, we calculate load currents, line currents,
and bus voltages using the ladder iterative technique in [25].
We then generate for each bus the three-phase load current and
three-phase voltage measurements, with biases and random er-
rors. Note that modern smart meters, such as the one in [22], take
very accurate measurements, whose errors are usually modeled
by white uncorrelated noise with zero mean and standard devi-
ation on the order of [11], [37], [38]. However, to further
validate our algorithms, we test them with current and voltage
measurement error standard deviations ranging from
to for , which have units of Am-
peres and Volts, respectively.
Besides, the probability of a user bus having a non-zero

measurement bias on any of its phases, i.e., the probability of a
user deciding to steal energy, is set to 0.3. Each energy thief's
measurement bias magnitude is uniformly chosen from the
interval and has the same angle as its corresponding
phase. The substation measurements have zero biases with
probability 1. Finally, we omit certain bias estimates of users
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TABLE I
PERFORMANCE OF SEK AND PPBE IN THE IEEE 13-BUS SYSTEM

who are connected to less than three phases. Moreover, we set
the bias threshold by choosing

, set the convergence parameter , and initialize
some matrices like and
for both systems.

A. IEEE 13-Bus Test System

SEK: Fig. 6(a) and (b) compares bias estimates obtained by
one run of the SEK algorithm to their true values, for all users
and all phases when the measurement error standard deviation
is equal to and , respectively. When , it
is clear that the estimated biases closely correspond to the true
values. Moreover, the threshold correctly differentiates energy
thieves from honest users, i.e., the bias estimates for honest
users are smaller than while the bias estimates for energy
thieves are larger than . In the case of , we observe
that the threshold is larger due to the increased error estima-
tion variance and that estimates start to deviate from their true
values. We also show in Fig. 6(c) the convergence of the bias
estimate for user 8, phase 1 under a measurement error standard
deviation of . In this case, we can see that the bias estimate
converges to a different value.
Besides, as shown in Table I, we find that the SEK has a

high success rate under all measurement error standard devi-
ation values. Note that the results in Table I are obtained by
averaging the results of 100 runs. In particular, SEK has a suc-
cess rate of 1.00 when equals and , and 0.99 when

. Table I also presents the average number of itera-
tions that it takes SEK to converge. As expected, SEK converges
faster under lower standard deviation values.
PPBE: In Fig. 7(a) and (b), we show the bias estimates of one

run of the PPBE algorithm along with the true bias values, when
the measurement error standard deviation is equal to and

, respectively. In the case of , we observe that
the PPBE algorithm can identify the energy thieves successfully
and its estimates are very accurate. In the case of , in
contrast to the SEK algorithm, we can see that the bias estimates
of PPBE are still very close to their true values. In fact, from
Table I we can see that the PPBE algorithm has a success rate
of 1.0 under and standard deviation values, and 0.99
under a standard deviation of .
Moreover, we present the convergence of the bias estimate for

user 8, phase 1 in Fig. 7(c) under a measurement error standard
deviation of , which is more accurate than that in Fig. 6(c).
In addition, Table I shows that the PPBE algorithm is capable
of converging in 4 iterations when , which is much
faster than SEK. We also find that PPBE can converge in as few
as 2 iterations when the measurement error standard deviation
is low, i.e., .

Fig. 8. Energy theft detection in the IEEE 123-bus system using SEK. (a) Bias
estimation using SEK under . (b) Bias estimation using SEK under

. (c) Estimate of bias 12 ( ) using SEK under
, (d) Estimate of bias 12 ( ) using SEK under .

B. IEEE 123-Bus Test System
SEK: Fig. 8(a) and (b) compares the bias estimates of the

SEK algorithm to their true values, when the measurement error
standard deviation is equal to and , respectively. We
observe that the SEK algorithm offers high success rates, but
its performance degrades when the measurement error standard
deviation is . In Fig. 8(c) and (d), we find that the estimated
bias converges quickly and very close to its true value when

, but converges slowly to a different value than its
value when .
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TABLE II
PERFORMANCE OF SEK AND PPBE IN THE IEEE 123-BUS SYSTEM

Besides, from Table II, we can see that the SEK algorithm
converges in 3 iterations when and 184 iterations
when , respectively.
PPBE: In Fig. 9(a) and (b), we show the bias estimates ob-

tained by PPBE and compare them to their true values under
measurement error standard deviations of and , re-
spectively. We can see that in both cases the success rates are
high. Fig. 9(c) and (d) show the bias estimate for user 4, phase
3 when the measurement error standard deviation is equal to

and , respectively. We observe that the bias estimate
quickly converges closely to its true value in both cases.
Besides, from Table II, we can see that the PPBE algorithm

has very high success rates and converges quickly in all the
cases, which demonstrates its efficiency and practicality.
In addition, we note that PPBE is capable of finding bias esti-

mates more accurately and more efficiently due to the fact that it
involves matrices of smaller sizes in its computations than SEK,
which reduces the number of round-off errors and increases nu-
merical stability.

C. Impact of System Parameter Uncertainty

Although very accurate system parameters can be obtained
[26], [27], temperature changes in the environment and other
inaccuracies may lead to uncertainty in our distribution system
parameters, e.g., power line impedances. To investigate the per-
formance of our algorithms under system parameter uncertainty,
we add white uncorrelated noise, which has zero mean and stan-
dard deviation proportional to an error bound, to the nominal
power line impedances. Specifically, for a given error bound

, we set the standard deviations for resistance and
reactance values to

for , respectively. These
choices of and result in random errors that are at most
percent of the nominal impedance values with a high proba-

bility of 99.7% according to the 68-95-99.7 rule. We notice that
a typical error bound for line parameter uncertainty in power
systems is % [39]. Furthermore, considering that tem-
perature changes may cause deviations greater than 2% of the
nominal resistance values, we test our algorithms with ac-
counting for temperature changes of up to 30 C, as summarized
in Table III, and setting % for . In particular, the re-
sistance of a conductor as a function of temperature can be ap-
proximated with the following formula [40]:

where is the nominal impedance, is the
change in temperature, and is the thermal coefficient. Usually,
the nominal temperature, , is set to 20 C. Assuming copper

Fig. 9. Energy theft detection in the IEEE 123-bus system using PPBE. (a) Bias
estimation using PPBE under . (b) Bias estimation using PPBE
under . (c) Estimate of bias 12 ( ) using PPBE under

. (d) Estimate of bias 12 ( ) using PPBE under
.

TABLE III
CHANGES IN THE RESISTANCE OF COPPER DUE TO TEMPERATURE CHANGES

conductors, we have and hence set
.
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Fig. 10. Success rate of PPBE under system parameter uncertainty.

To study the impact of system parameter uncertainty on the
success rate of the PPBE algorithm, we run the algorithm for
different values of when , and measure its suc-
cess rate. We set to account for temperature changes that
were not considered in the original computation of threshold .
The results are plotted in Fig. 10. Specifically, we observe that
the PPBE algorithm can identify energy thieves with a success
rate of about 0.9 when the uncertainty bound is 2%. Therefore,
the PPBE algorithm is very robust to typical line impedance un-
certainties due to temperature changes ( C). Besides,
the success rate of PPBE remains above 0.75 when the uncer-
tainty bound of the resistance is 7.8% ( C), and drops
to 0.5 when the uncertainty bound of the resistance is 11.7%
( C).

VI. CONCLUSION

In this paper, we have investigated energy theft detection in
microgrids, considering a realistic model for the microgrid's
power system and the protection of users' privacy. We have pro-
posed two energy theft detection algorithms capable of success-
fully identifying energy thieves. One algorithm called SEK em-
ploys a centralized Kalman filter but cannot protect users' pri-
vacy and does not have very good numerical stability in large
systems with high measurement errors. The other one called
PPBE is based on two loosely coupled filters, and can preserve
users' privacy by hiding their energy measurements from the
system operator, other users, and eavesdroppers. We have fi-
nally validated the proposed algorithms through privacy anal-
ysis and extensive simulations. Noticeably, PPBE can converge
much faster and have much better numerical stability than SEK.
We also find that the PPBE algorithm has good performance
under system parameter uncertainty. We leave for future work
the design of a robust algorithm that can provide theoretical per-
formance guarantee under line impedance uncertainty.
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